In mathematical modeling, resilience refers to the ability of a dynamical system to recover from perturbations and return to its original stable steady state. [1] It is a measure of the stability and robustness of a system in the face of changes or disturbances. If a system is not resilient enough, it is more susceptible to perturbations and can more easily undergo a critical transition. A common analogy used to explain the concept of resilience of an equilibrium is one of a ball in a valley. A resilient steady state corresponds to a ball in a deep valley, so any push or perturbation will very quickly lead the ball to return to the resting point where it started. On the other hand, a less resilient steady state corresponds to a ball in a shallow valley, so the ball will take a much longer time to return to the equilibrium after a perturbation.
The concept of resilience is particularly useful in systems that exhibit tipping points, whose study has a long history that can be traced back to catastrophe theory. While this theory was initially overhyped and fell out of favor, its mathematical foundation remains strong and is now recognized as relevant to many different systems. [2] [3]
In 1973, Canadian ecologist C. S. Holling proposed a definition of resilience in the context of ecological systems. According to Holling, resilience is "a measure of the persistence of systems and of their ability to absorb change and disturbance and still maintain the same relationships between populations or state variables". Holling distinguished two types of resilience: engineering resilience and ecological resilience. [4] Engineering resilience refers to the ability of a system to return to its original state after a disturbance, such as a bridge that can be repaired after an earthquake. Ecological resilience, on the other hand, refers to the ability of a system to maintain its identity and function despite a disturbance, such as a forest that can regenerate after a wildfire while maintaining its biodiversity and ecosystem services. With time, the once well-defined and unambiguous concept of resilience has experienced a gradual erosion of its clarity, becoming more vague and closer to an umbrella term than a specific concrete measure. [5]
Mathematically, resilience can be approximated by the inverse of the return time to an equilibrium [6] [7] [8] given by
where is the maximum eigenvalue of matrix .
The largest this value is, the faster a system returns to the original stable steady state, or in other words, the faster the perturbations decay. [9]
In ecology, resilience might refer to the ability of the ecosystem to recover from disturbances such as fires, droughts, or the introduction of invasive species. A resilient ecosystem would be one that is able to adapt to these changes and continue functioning, while a less resilient ecosystem might experience irreversible damage or collapse. [10] The exact definition of resilience has remained vague for practical matters, which has led to a slow and proper application of its insights for management of ecosystems. [11]
In epidemiology, resilience may refer to the ability of a healthy community to recover from the introduction of infected individuals. That is, a resilient system is more likely to remain at the disease-free equilibrium after the invasion of a new infection. Some stable systems exhibit critical slowing down where, as they approach a basic reproduction number of 1, their resilience decreases, hence taking a longer time to return to the disease-free steady state. [12]
Resilience is an important concept in the study of complex systems, where there are many interacting components that can affect each other in unpredictable ways. [13] Mathematical models can be used to explore the resilience of such systems and to identify strategies for improving their resilience in the face of environmental or other changes. For example, when modelling networks it is often important to be able to quantify network resilience, or network robustness, to the loss of nodes. Scale-free networks are particularly resilient [14] since most of their nodes have few links. This means that if some nodes are randomly removed, it is more likely that the nodes with fewer connections are taken out, thus preserving the key properties of the network. [15]
An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.
Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.
The diversity of species and genes in ecological communities affects the functioning of these communities. These ecological effects of biodiversity in turn are affected by both climate change through enhanced greenhouse gases, aerosols and loss of land cover, and biological diversity, causing a rapid loss of biodiversity and extinctions of species and local populations. The current rate of extinction is sometimes considered a mass extinction, with current species extinction rates on the order of 100 to 1000 times as high as in the past.
In ecology, an ecosystem is said to possess ecological stability if it is capable of returning to its equilibrium state after a perturbation or does not experience unexpected large changes in its characteristics across time. Although the terms community stability and ecological stability are sometimes used interchangeably, community stability refers only to the characteristics of communities. It is possible for an ecosystem or a community to be stable in some of their properties and unstable in others. For example, a vegetation community in response to a drought might conserve biomass but lose biodiversity.
In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.
Adaptive capacity relates to the capacity of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. In the context of ecosystems, adaptive capacity is determined by genetic diversity of species, biodiversity of particular ecosystems in specific landscapes or biome regions. In the context of coupled socio-ecological social systems, adaptive capacity is commonly associated with the following characteristics: Firstly, the ability of institutions and networks to learn, and store knowledge and experience. Secondly, the creative flexibility in decision making, transitioning and problem solving. And thirdly, the existence of power structures that are responsive and consider the needs of all stakeholders.
Ascendency or ascendancy is a quantitative attribute of an ecosystem, defined as a function of the ecosystem's trophic network. Ascendency is derived using mathematical tools from information theory. It is intended to capture in a single index the ability of an ecosystem to prevail against disturbance by virtue of its combined organization and size.
In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.
Ecosystem management is an approach to natural resource management that aims to ensure the long-term sustainability and persistence of an ecosystem's function and services while meeting socioeconomic, political, and cultural needs. Although indigenous communities have employed sustainable ecosystem management approaches implicitly for millennia, ecosystem management emerged explicitly as a formal concept in the 1990s from a growing appreciation of the complexity of ecosystems and of humans' reliance and influence on natural systems.
In ecology, the theory of alternative stable states predicts that ecosystems can exist under multiple "states". These alternative states are non-transitory and therefore considered stable over ecologically-relevant timescales. Ecosystems may transition from one stable state to another, in what is known as a state shift, when perturbed. Due to ecological feedbacks, ecosystems display resistance to state shifts and therefore tend to remain in one state unless perturbations are large enough. Multiple states may persist under equal environmental conditions, a phenomenon known as hysteresis. Alternative stable state theory suggests that discrete states are separated by ecological thresholds, in contrast to ecosystems which change smoothly and continuously along an environmental gradient.
In the context of ecological stability, resistance is the property of communities or populations to remain "essentially unchanged" when subject to disturbance. The inverse of resistance is sensitivity.
A social-ecological system consists of 'a bio-geo-physical' unit and its associated social actors and institutions. Social-ecological systems are complex and adaptive and delimited by spatial or functional boundaries surrounding particular ecosystems and their context problems.
The resilience of coral reefs is the biological ability of coral reefs to recover from natural and anthropogenic disturbances such as storms and bleaching episodes. Resilience refers to the ability of biological or social systems to overcome pressures and stresses by maintaining key functions through resisting or adapting to change. Reef resistance measures how well coral reefs tolerate changes in ocean chemistry, sea level, and sea surface temperature. Reef resistance and resilience are important factors in coral reef recovery from the effects of ocean acidification. Natural reef resilience can be used as a recovery model for coral reefs and an opportunity for management in marine protected areas (MPAs).
This is a bibliography of ecology.
In the fields of engineering and construction, resilience is the ability to absorb or avoid damage without suffering complete failure and is an objective of design, maintenance and restoration for buildings and infrastructure, as well as communities. A more comprehensive definition is that it is the ability to respond, absorb, and adapt to, as well as recover in a disruptive event. A resilient structure/system/community is expected to be able to resist to an extreme event with minimal damages and functionality disruptions during the event; after the event, it should be able to rapidly recovery its functionality similar to or even better than the pre-event level.
Climate resilience is a concept to describe how well people or ecosystems are prepared to bounce back from certain climate hazard events. The formal definition of the term is the "capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance". For example, climate resilience can be the ability to recover from climate-related shocks such as floods and droughts. Different actions can increase climate resilience of communities and ecosystems to help them cope. They can help to keep systems working in the face of external forces. For example, building a seawall to protect a coastal community from flooding might help maintain existing ways of life there.
In ecology regeneration is the ability of an ecosystem – specifically, the environment and its living population – to renew and recover from damage. It is a kind of biological regeneration.
An ecosystem, short for ecological system, is defined as a collection of interacting organisms within a biophysical environment. Ecosystems are never static, and are continually subject to both stabilizing and destabilizing processes. Stabilizing processes allow ecosystems to adequately respond to destabilizing changes, or perturbations, in ecological conditions, or to recover from degradation induced by them: yet, if destabilizing processes become strong enough or fast enough to cross a critical threshold within that ecosystem, often described as an ecological 'tipping point', then an ecosystem collapse. occurs.
Critical transitions are abrupt shifts in the state of ecosystems, the climate, financial and economic systems or other complex dynamical systems that may occur when changing conditions pass a critical or bifurcation point. As such, they are a particular type of regime shift. Recovery from such shifts may require more than a simple return to the conditions at which a transition occurred, a phenomenon called hysteresis. In addition to natural systems, critical transitions are also studied in psychology, medicine, economics, sociology, military, and several other disciplines.
Supply chain resilience is "the capacity of a supply chain to persist, adapt, or transform in the face of change".