Rho kinase inhibitor

Last updated

Rho-kinase inhibitors (rho-associated protein kinase inhibitor or ROCK inhibitor) are a series of compounds that target rho kinase (ROCK) and inhibit the ROCK pathway. [1] Clinical trials have found that inhibition of the ROCK pathway contributes to the cardiovascular benefits of statin therapy. Furthermore, ROCK inhibitors may have clinical applications for anti-erectile dysfunction, antihypertension, and tumor metastasis inhibition. [2] More recently they have been studied for the treatment of glaucoma [3] and as a therapeutic target for the treatment of cardiovascular diseases, including ischemic stroke. [4] While statin therapy has been demonstrated to reduce the risk of major cardiovascular events, including ischemic stroke, [5] the interplay between the ROCK pathway and statin therapy to treat and prevent strokes in older adults has not yet been proven. [4]

Contents

On a cellular level, ROCK has multiple functions, including regulation of smooth muscle cell contraction, cell migration, and maintenance of cell viability and morphology, in part by regulating stress fibers and focal adhesions. [2] Particularly, ROCK inhibitor is used for cell culture practice, in part to limit cellular death and limited dedifferentiation, [6] [7] [8] and therefore widely adopted for induced pluripotent stem cells (iPSC) and embryonic stem cell cultures, [9] although studies have shown mixed results for other cells types. [10]

ROCK Inhibitor Pathway Rhokinase.png
ROCK Inhibitor Pathway

Molecular mechanism

Rho kinase inhibitors act on Rho kinase by altering the conformation of the protein, disrupting translocation to the plasma membrane, preventing ATP-dependent phosphorylation, and blocking RhoA binding to ROCK. [11] Some studies suggest that Rho kinase inhibitors also play a role in anti-angiogenesis by blocking ERK and Akt signaling pathways. [12] [13] Rho kinase inhibitor also functions by blocking rho-mediated dephosphorylation of MLC20. [14]

Examples

A number of Rho kinase inhibitors are known. [15] [16] [17]

Chemical structure of fasudil Fasudil.svg
Chemical structure of fasudil

Related Research Articles

<span class="mw-page-title-main">Statin</span> Class of drugs used to lower cholesterol levels

Statins are the most common cholesterol-lowering drugs. Also known as HMG-CoA reductase inhibitors, they are a class of lipid-lowering medications that reduce illness and mortality in those who are at high risk of cardiovascular disease.

<span class="mw-page-title-main">HMG-CoA reductase</span> Mammalian protein found in Homo sapiens

HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol. Normally in mammalian cells this enzyme is competitively suppressed so that its effect is controlled. This enzyme is the target of the widely available cholesterol-lowering drugs known collectively as the statins, which help treat dyslipidemia.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

<span class="mw-page-title-main">Wortmannin</span> Chemical compound

Wortmannin, a steroid metabolite of the fungi Penicillium funiculosum, Talaromyces wortmannii, is a non-specific, covalent inhibitor of phosphoinositide 3-kinases (PI3Ks). It has an in vitro inhibitory concentration (IC50) of around 5 nM, making it a more potent inhibitor than LY294002, another commonly used PI3K inhibitor. It displays a similar potency in vitro for the class I, II, and III PI3K members although it can also inhibit other PI3K-related enzymes such as mTOR, DNA-PKcs, some phosphatidylinositol 4-kinases, myosin light chain kinase (MLCK) and mitogen-activated protein kinase (MAPK) at high concentrations Wortmannin has also been reported to inhibit members of the polo-like kinase family with IC50 in the same range as for PI3K. The half-life of wortmannin in tissue culture is about 10 minutes due to the presence of the highly reactive C20 carbon that is also responsible for its ability to covalently inactivate PI3K. Wortmannin is a commonly used cell biology reagent that has been used previously in research to inhibit DNA repair, receptor-mediated endocytosis and cell proliferation.

<span class="mw-page-title-main">Nicorandil</span> Chemical compound

Nicorandil is a vasodilatory drug used to treat angina.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">ROCK1</span> Protein

ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.

<span class="mw-page-title-main">Prostaglandin F receptor</span> Protein-coding gene in the species Homo sapiens

Prostaglandin F receptor (FP) is a receptor belonging to the prostaglandin (PG) group of receptors. FP binds to and mediates the biological actions of Prostaglandin F (PGF). It is encoded in humans by the PTGFR gene.

<span class="mw-page-title-main">PFKFB3</span> Protein-coding gene in the species Homo sapiens

PFKFB3 is a gene that encodes the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 enzyme in humans. It is one of 4 tissue-specific PFKFB isoenzymes identified currently (PFKFB1-4).

<span class="mw-page-title-main">WWTR1</span> Protein-coding gene in the species Homo sapiens

WW domain-containing transcription regulator protein 1 (WWTR1), also known as Transcriptional coactivator with PDZ-binding motif (TAZ), is a protein that in humans is encoded by the WWTR1 gene. WWTR1 acts as a transcriptional coregulator and has no effect on transcription alone. When in complex with transcription factor binding partners, WWTR1 helps promote gene expression in pathways associated with development, cell growth and survival, and inhibiting apoptosis. Aberrant WWTR1 function has been implicated for its role in driving cancers. WWTR1 is often referred to as TAZ due to its initial characterization with the name TAZ. However, WWTR1 (TAZ) is not to be confused with the protein tafazzin, which originally held the official gene symbol TAZ, and is now TAFAZZIN.

Fasudil (INN) is a potent Rho-kinase inhibitor and vasodilator. Since it was discovered, it has been used for the treatment of cerebral vasospasm, which is often due to subarachnoid hemorrhage, as well as to improve the cognitive decline seen in stroke patients. It has been found to be effective for the treatment of pulmonary hypertension. It has been demonstrated that fasudil could improve memory in normal mice, identifying the drug as a possible treatment for age-related or neurodegenerative memory loss.

<span class="mw-page-title-main">H-89</span> Chemical compound

H-89 is a protein kinase inhibitor with greatest effect on protein kinase A (PKA). H-89, derived from H-8, was initially believed to act specifically as an inhibitor of PKA, being 30 times more potent than H-8 at inhibiting PKA and 10 times less potent at inhibiting protein kinase G. It achieves this through competitive inhibition of the adenosine triphosphate (ATP) site on the PKA catalytic subunit. However, subsequent work has suggested a variety of additional effects such as inhibition of other protein kinases, and direct inhibition of various potassium currents.

A Janus kinase inhibitor, also known as JAK inhibitor or jakinib, is a type of immune modulating medication, which inhibits the activity of one or more of the Janus kinase family of enzymes, thereby interfering with the JAK-STAT signaling pathway in lymphocytes.

<span class="mw-page-title-main">Rho-associated protein kinase</span>

Rho-associated protein kinase (ROCK) is a kinase belonging to the AGC family of serine-threonine specific protein kinases. It is involved mainly in regulating the shape and movement of cells by acting on the cytoskeleton.

<span class="mw-page-title-main">TTC7A</span> Protein-coding gene in the species Homo sapiens

Tetratricopeptide repeat domain 7A (TTC7A) is a protein that in humans is encoded by the TTC7A gene.

Ripasudil, a derivative of fasudil, is a rho kinase inhibitor drug used for the treatment of glaucoma and ocular hypertension.

Said Sebti (Arabic: سيد سبتي, (first name is an American cancer researcher who is Professor and Chairman of the Department of Drug Discovery at the H. Lee Moffitt Cancer Center & Research Institute in Tampa, Fl. Sebti is noted for his work to rehabilitate the 'failed' cancer drug Triciribine, now under development at the pharmaceutical company Prescient Therapeutics. Sebti is currently Chief Scientific Officer at Prescient Therapeutics.

<span class="mw-page-title-main">TC-S 7001</span> Chemical compound

TC-S 7001 (Azaindole-1) is a drug which acts as a potent and selective inhibitor of the enzyme Rho kinase, with an IC50 of 0.6 nM at ROCK1 and 1.1 nM at ROCK2. It has vasodilatory effects and has been used in research for a variety of applications.

<span class="mw-page-title-main">RKI-1447</span> Chemical compound

RKI-1447 is a drug which acts as a potent and selective inhibitor of the enzyme Rho kinase, with an IC50 of 14.5 nM at ROCK1 and 6.2 nM at ROCK2. It has been investigated for applications in cancer treatment, as well as glaucoma, and nonalcoholic fatty liver disease.

References

  1. Liao, James K.; Seto, Minoru; Noma, Kensuke (July 2007). "Rho Kinase (ROCK) Inhibitors". Journal of Cardiovascular Pharmacology. 50 (1): 17–24. doi:10.1097/FJC.0b013e318070d1bd. ISSN   0160-2446. PMC   2692906 . PMID   17666911.
  2. 1 2 Liao JK, Seto M, Noma K (July 2007). "Rho kinase (ROCK) inhibitors". Journal of Cardiovascular Pharmacology. 50 (1): 17–24. doi:10.1097/FJC.0b013e318070d1bd. PMC   2692906 . PMID   17666911.
  3. Wang SK, Chang RT (2014). "An emerging treatment option for glaucoma: Rho kinase inhibitors". Clinical Ophthalmology. 8: 883–90. doi: 10.2147/OPTH.S41000 . PMC   4025933 . PMID   24872673.
  4. 1 2 Sladojevic N, Yu B, Liao JK (December 2017). "ROCK as a therapeutic target for ischemic stroke". Expert Review of Neurotherapeutics. 17 (12): 1167–1177. doi:10.1080/14737175.2017.1395700. PMC   6221831 . PMID   29057688.
  5. O'Brien EC, Greiner MA, Xian Y, Fonarow GC, Olson DM, Schwamm LH, et al. (October 2015). "Clinical Effectiveness of Statin Therapy After Ischemic Stroke: Primary Results From the Statin Therapeutic Area of the Patient-Centered Research Into Outcomes Stroke Patients Prefer and Effectiveness Research (PROSPER) Study". Circulation. 132 (15): 1404–13. doi: 10.1161/CIRCULATIONAHA.115.016183 . PMID   26246175. S2CID   11252336.
  6. Matsumoto E, Furumatsu T, Kanazawa T, Tamura M, Ozaki T (March 2012). "ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes". Biochemical and Biophysical Research Communications. 420 (1): 124–9. doi:10.1016/j.bbrc.2012.02.127. PMID   22405765.
  7. Furumatsu T, Matsumoto-Ogawa E, Tanaka T, Lu Z, Ozaki T (April 2014). "ROCK inhibition enhances aggrecan deposition and suppresses matrix metalloproteinase-3 production in human articular chondrocytes". Connective Tissue Research. 55 (2): 89–95. doi:10.3109/03008207.2013.852544. PMID   24111521. S2CID   41211282.
  8. Qi Y, Liang X, Dai F, Guan H, Sun J, Yao W (July 2020). "RhoA/ROCK Pathway Activation is Regulated by AT1 Receptor and Participates in Smooth Muscle Migration and Dedifferentiation via Promoting Actin Cytoskeleton Polymerization". International Journal of Molecular Sciences. 21 (15): 5398. doi: 10.3390/ijms21155398 . PMC   7432407 . PMID   32751352.
  9. Claassen DA, Desler MM, Rizzino A (August 2009). "ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells". Molecular Reproduction and Development. 76 (8): 722–32. doi:10.1002/mrd.21021. PMC   3257892 . PMID   19235204.
  10. Nukaga T, Sakai D, Schol J, Suyama K, Nakai T, Hiyama A, Watanabe M (2019). "Minimal Sustainability of Dedifferentiation by ROCK Inhibitor on Rat Nucleus Pulposus Cells In Vitro". Spine Surgery and Related Research. 3 (4): 385–391. doi:10.22603/ssrr.2019-0019. PMC   6834460 . PMID   31768460.
  11. Yamaguchi, Hiroto; Kasa, Miyuki; Amano, Mutsuki; Kaibuchi, Kozo; Hakoshima, Toshio (2006-03-01). "Molecular Mechanism for the Regulation of Rho-Kinase by Dimerization and Its Inhibition by Fasudil". Structure. 14 (3): 589–600. doi: 10.1016/j.str.2005.11.024 . ISSN   0969-2126. PMID   16531242.
  12. Hata, Yasuaki; Miura, Muneki; Nakao, Shintaro; Kawahara, Shuhei; Kita, Takeshi; Ishibashi, Tatsuro (2008-02-01). "Antiangiogenic properties of fasudil, a potent Rho-Kinase inhibitor". Japanese Journal of Ophthalmology. 52 (1): 16–23. doi:10.1007/s10384-007-0487-5. ISSN   1613-2246. PMID   18369695. S2CID   179423.
  13. Khalil, Raouf A. (2010). Rho Kinase in Vascular Smooth Muscle. Morgan & Claypool Life Sciences.
  14. Nagumo, Hiromitsu; Sasaki, Yasuharu; Ono, Yoshitaka; Okamoto, Hiroyuki; Seto, Minoru; Takuwa, Yoh (2000-01-01). "Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells". American Journal of Physiology. Cell Physiology. 278 (1): C57–C65. doi: 10.1152/ajpcell.2000.278.1.C57 . ISSN   0363-6143. PMID   10644512.
  15. You, Y., Zhu, K., Wang, J., Liang, Q., Li, W., Wang, L., ... & Shi, J. (2023). ROCK inhibitor: Focus on recent updates. Chinese Chemical Letters, 108336. https://doi.org/10.1016/j.cclet.2023.108336
  16. Luo M, Li YQ, Lu YF, Wu Y, Liu R, Zheng YR, Yin M (November 2020). "Exploring the potential of RhoA inhibitors to improve exercise-recoverable spinal cord injury: A systematic review and meta-analysis". Journal of Chemical Neuroanatomy. 111: 101879. doi: 10.1016/j.jchemneu.2020.101879 . ISSN   0891-0618. PMID   33197553.
  17. de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS (October 2020). "Should we keep rocking? Portraits from targeting Rho kinases in cancer". Pharmacological Research. 160: 105093. doi:10.1016/j.phrs.2020.105093. PMID   32726671. S2CID   220877441.
  18. Rath N, Munro J, Cutiongco MF, Jagiełło A, Gadegaard N, McGarry L, et al. (June 2018). "Rho Kinase Inhibition by AT13148 Blocks Pancreatic Ductal Adenocarcinoma Invasion and Tumor Growth". Cancer Research. 78 (12): 3321–3336. doi: 10.1158/0008-5472.CAN-17-1339 . PMC   6005347 . PMID   29669760.
  19. Chroman 1, CAS No. : 1273579-40-0
  20. Chen Y, Tristan CA, Chen L, Jovanovic VM, Malley C, Chu PH, et al. (May 2021). "A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells". Nature Methods. 18 (5): 528–541. doi:10.1038/s41592-021-01126-2. PMC   8314867 . PMID   33941937.
  21. Kale VP, Hengst JA, Desai DH, Dick TE, Choe KN, Colledge AL, et al. (November 2014). "A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion". Cancer Letters. 354 (2): 299–310. doi:10.1016/j.canlet.2014.08.032. PMC   4182185 . PMID   25172415.
  22. Phrommintikul A, Tran L, Kompa A, Wang B, Adrahtas A, Cantwell D, et al. (April 2008). "Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction". American Journal of Physiology. Heart and Circulatory Physiology. 294 (4): H1804-14. doi:10.1152/ajpheart.01078.2007. PMID   18245565. S2CID   6554772.
  23. GSK429286A@pubchem
  24. Teixeira, C. E.; Jin, L.; Priviero, F. B.; Ying, Z.; Webb, R. C. (2007). "Comparative pharmacological analysis of Rho-kinase inhibitors and identification of molecular components of Ca2+ sensitization in the rat lower urinary tract". Biochemical Pharmacology. 74 (4): 647–658. doi:10.1016/j.bcp.2007.06.004. PMC   1987395 . PMID   17603024.
  25. Boland S, Bourin A, Alen J, Geraets J, Schroeders P, Castermans K, et al. (September 2015). "Design, synthesis and biological characterization of selective LIMK inhibitors". Bioorganic & Medicinal Chemistry Letters. 25 (18): 4005–10. doi:10.1016/j.bmcl.2015.07.009. PMID   26233434.
  26. "RHOPRESSA presribing information" (PDF). U.S. Food and Drug Administration.
  27. Patel RA, Forinash KD, Pireddu R, Sun Y, Sun N, Martin MP, et al. (October 2012). "RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer". Cancer Research. 72 (19): 5025–34. doi:10.1158/0008-5472.CAN-12-0954. PMC   3463757 . PMID   22846914.
  28. Williams RD, Novack GD, van Haarlem T, Kopczynski C (November 2011). "Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension". American Journal of Ophthalmology. 152 (5): 834–41.e1. doi:10.1016/j.ajo.2011.04.012. PMID   21794845.
  29. "information of different kinds of ROCK inhibitor". selleckchemicals.

Further reading