ROCK | |
---|---|
Identifiers | |
Symbol | Rho-associated protein kinase |
Alt. symbols | Rho-associated, coiled-coil-containing protein kinase |
NCBI gene | 579202 |
Other data | |
EC number | 2.7.11.1 |
Rho-associated protein kinase or Rho-associated coiled-coil kinase (ROCK) is a kinase belonging to the AGC (PKA/ PKG/PKC) family of serine-threonine specific protein kinases. It is involved mainly in regulating the shape and movement of cells by acting on the cytoskeleton.
ROCKs (ROCK1 and ROCK2) occur in mammals (human, rat, mouse, cow), zebrafish, Xenopus , invertebrates ( C. elegans , mosquito, Drosophila ) and chicken. Human ROCK1 has a molecular mass of 158 kDa and is a major downstream effector of the small GTPase RhoA. Mammalian ROCK consists of a kinase domain, a coiled-coil region and a Pleckstrin homology (PH) domain, which reduces the kinase activity of ROCKs by an autoinhibitory intramolecular fold if RhoA-GTP is not present. [1] [2]
Rat ROCKs were discovered as the first effectors of Rho and they induce the formation of stress fibers and focal adhesions by phosphorylating MLC (myosin light chain). [3] Due to this phosphorylation, the actin binding of myosin II and, thus, the contractility increases. Two mouse ROCK isoforms ROCK1 and ROCK2 have been identified. ROCK1 is mainly expressed in the lung, liver, spleen, kidney and testis. However, ROCK2 is distributed mostly in the brain and heart. [1] [2] [4]
Protein kinase C and Rho-associated protein kinase are involved in regulating calcium ion intake; these calcium ions, in turn stimulate a myosin light chain kinase, forcing a contraction. [5] Rho-associated protein kinase are serine or threonine kinases that determine the calcium sensitivity in smooth muscle cells.
ROCK plays a role in a wide range of different cellular phenomena, as ROCK is a downstream effector protein of the small GTPase Rho, which is one of the major regulators of the cytoskeleton.
1. ROCK is a key regulator of actin organization and thus a regulator of cell migration as follows:
Different substrates can be phosphorylated by ROCKs, including LIM kinase, myosin light chain (MLC) and MLC phosphatase. These substrates, once phosphorylated, regulate actin filament organization and contractility as follows: [2]
ROCK inhibits the depolymerization of actin filaments indirectly: ROCK phosphorylates and activates LIM kinase, which in turn phosphorylates ADF/cofilin, thereby inactivating its actin-depolymerization activity. This results in the stabilization of actin filaments and an increase in their numbers. Thus, over time actin monomers that are needed to continue actin polymerization for migration become limited. The increased stable actin filaments and the loss of actin monomers contribute to a reduction of cell migration. [2] [6]
ROCK also regulates cell migration by promoting cellular contraction and thus cell-substratum contacts. ROCK increases the activity of the motor protein myosin II by two different mechanisms:
Thus in both cases, ROCK activation by Rho induces the formation of actin stress fibers, actin filament bundles of opposing polarity, containing myosin II, tropomyosin, caldesmon and MLC-kinase, and consequently of focal contacts, which are immature integrin-based adhesion points with the extracellular substrate. [2] [7]
2. Other functions and targets
3. Other ROCK targets
Rho-associated, coiled-coil-containing protein kinase 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | ROCK1 | ||||||
NCBI gene | 6093 | ||||||
HGNC | 10251 | ||||||
OMIM | 601702 | ||||||
RefSeq | NM_005406 | ||||||
UniProt | Q13464 | ||||||
|
Rho-associated, coiled-coil-containing protein kinase 2 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | ROCK2 | ||||||
NCBI gene | 9475 | ||||||
HGNC | 10252 | ||||||
OMIM | 604002 | ||||||
RefSeq | NM_004850 | ||||||
UniProt | O75116 | ||||||
|
The two mouse ROCK isoforms, ROCK1 and ROCK2, have high homology. They have 65% amino acid sequences in common and 92% homology within their kinase domains. [1] [4]
ROCKs are homologous to other metazoan kinases such as myotonic dystrophy kinase (DMPK), DMPK-related cell division control protein 42 (Cdc42)-binding kinases (MRCK) and citron kinase. All of these kinases are composed of a N-terminal kinase domain, a coiled-coil structure and other functional motifs at the C-terminus [2]
ROCK is a downstream effector molecule of the Rho GTPase Rho that increases ROCK kinase activity when bound to it.
ROCK activity is regulated by the disruption of an intramolecular autoinhibition. In general, the structure of ROCK proteins consists of an N-terminal kinase domain, a coiled-coiled region and a PH domain containing a cystein-rich domain (CRD) at the C-terminal. A Rho-binding domain (RBD) is located in close proximity just in front of the PH domain.
The kinase activity is inhibited by the intramolecular binding between the C-terminal cluster of RBD domain and the PH domain to the N-terminal kinase domain of ROCK. Thus, the kinase activity is off when ROCK is intramolecularly folded. The kinase activity is switched on when Rho-GTP binds to the Rho-binding domain of ROCK, disrupting the autoinhibitory interaction within ROCK, which liberates the kinase domain because ROCK is then no longer intramolecularly folded. [2]
It has also been shown that Rho is not the only activator of ROCK. ROCK can also be regulated by lipids, in particular arachidonic acid, and protein oligomerization, which induces N-terminal transphosphorylation. [2]
This section needs expansion. You can help by adding to it. (January 2020) |
Research over the past two decades has shown that ROCK signaling plays an important role in many diseases including cardiovascular disease, [15] [16] neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, [17] and cancer. [18] For example, ROCK has been hypothesized to play an important role in the pleiotropic effects of statins. ROCK1/2 along with MRCKα/β kinases have been implicated in the plasticity of cancer cell migration, the phenomenon which bestows survival advantage to the cancer cells during drug treatments (drug resistance). [19]
Researchers are developing ROCK inhibitors such as RKI-1447 for treating various diseases including cancer. [20] [21] For example, such drugs have potential to prevent cancer from spreading by blocking cell migration, stopping cancer cells from spreading into neighboring tissue. [1]
Cytokinesis is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis. During cytokinesis the spindle apparatus partitions and transports duplicated chromatids into the cytoplasm of the separating daughter cells. It thereby ensures that chromosome number and complement are maintained from one generation to the next and that, except in special cases, the daughter cells will be functional copies of the parent cell. After the completion of the telophase and cytokinesis, each daughter cell enters the interphase of the cell cycle.
Smoothmuscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non-striated, so-called because it has no sarcomeres and therefore no striations. It can be divided into two subgroups, single-unit and multi-unit smooth muscle. Within single-unit muscle, the whole bundle or sheet of smooth muscle cells contracts as a syncytium.
Myosin light-chain kinase also known as MYLK or MLCK is a serine/threonine-specific protein kinase that phosphorylates a specific myosin light chain, namely, the regulatory light chain of myosin II.
Aurora kinase B is a protein that functions in the attachment of the mitotic spindle to the centromere and in cytokinesis.
Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.
ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.
Protein kinase C epsilon type (PKCε) is an enzyme that in humans is encoded by the PRKCE gene. PKCε is an isoform of the large PKC family of protein kinases that play many roles in different tissues. In cardiac muscle cells, PKCε regulates muscle contraction through its actions at sarcomeric proteins, and PKCε modulates cardiac cell metabolism through its actions at mitochondria. PKCε is clinically significant in that it is a central player in cardioprotection against ischemic injury and in the development of cardiac hypertrophy.
Unconventional myosin-VI, is a protein that in humans is coded for by MYO6. Unconventional myosin-VI is a myosin molecular motor involved in intracellular vesicle and organelle transport.
Myosin light-chain phosphatase, also called myosin phosphatase (EC 3.1.3.53; systematic name [myosin-light-chain]-phosphate phosphohydrolase), is an enzyme (specifically a serine/threonine-specific protein phosphatase) that dephosphorylates the regulatory light chain of myosin II:
A myosin light chain is a light chain of myosin. Myosin light chains were discovered by Chinese biochemist Cao Tianqin when he was a graduate student at the University of Cambridge in England.
Protein phosphatase 1 regulatory subunit 12A is an enzyme that in humans is encoded by the PPP1R12A gene.
Myosin-10 also known as myosin heavy chain 10 or non-muscle myosin IIB (NM-IIB) is a protein that in humans is encoded by the MYH10 gene. Non-muscle myosins are expressed in a wide variety of tissues, but NM-IIB is the only non-muscle myosin II isoform expressed in cardiac muscle, where it localizes to adherens junctions within intercalated discs. NM-IIB is essential for normal development of cardiac muscle and for integrity of intercalated discs. Mutations in MYH10 have been identified in patients with left atrial enlargement.
Citron Rho-interacting kinase is an enzyme that in humans is encoded by the CIT gene.
Anillin is a conserved protein implicated in cytoskeletal dynamics during cellularization and cytokinesis. The ANLN gene in humans and the scraps gene in Drosophila encode Anillin. In 1989, anillin was first isolated in embryos of Drosophila melanogaster. It was identified as an F-actin binding protein. Six years later, the anillin gene was cloned from cDNA originating from a Drosophila ovary. Staining with anti-anillin antibody showed the anillin localizes to the nucleus during interphase and to the contractile ring during cytokinesis. These observations agree with further research that found anillin in high concentrations near the cleavage furrow coinciding with RhoA, a key regulator of contractile ring formation.
Stress fibers are contractile actin bundles found in non-muscle cells. They are composed of actin (microfilaments) and non-muscle myosin II (NMMII), and also contain various crosslinking proteins, such as α-actinin, to form a highly regulated actomyosin structure within non-muscle cells. Stress fibers have been shown to play an important role in cellular contractility, providing force for a number of functions such as cell adhesion, migration and morphogenesis.
Myosin light chain kinase, smooth muscle also known as kinase-related protein (KRP) or telokin is an enzyme that in humans is encoded by the MYLK gene.
In molecular biology, the FERM domain is a widespread protein module involved in localising proteins to the plasma membrane. FERM domains are found in a number of cytoskeletal-associated proteins that associate with various proteins at the interface between the plasma membrane and the cytoskeleton. The FERM domain is located at the N terminus in the majority of proteins in which it is found.
Calponin 1 is a basic smooth muscle protein that in humans is encoded by the CNN1 gene.
Rho associated coiled-coil containing protein kinase 2 is a protein that in humans is encoded by the ROCK2 gene. Fasudil is an inhibitor of ROCK protein.
In molecular biology, an actomyosin ring or contractile ring, is a prominent structure during cytokinesis. It forms perpendicular to the axis of the spindle apparatus towards the end of telophase, in which sister chromatids are identically separated at the opposite sides of the spindle forming nuclei. The actomyosin ring follows an orderly sequence of events: identification of the active division site, formation of the ring, constriction of the ring, and disassembly of the ring. It is composed of actin and myosin II bundles, thus the term actomyosin. The actomyosin ring operates in contractile motion, although the mechanism on how or what triggers the constriction is still an evolving topic. Other cytoskeletal proteins are also involved in maintaining the stability of the ring and driving its constriction. Apart from cytokinesis, in which the ring constricts as the cells divide, actomyosin ring constriction has also been found to activate during wound closure. During this process, actin filaments are degraded, preserving the thickness of the ring. After cytokinesis is complete, one of the two daughter cells inherits a remnant known as the midbody ring.