Casein kinase 2

Last updated

Casein kinase 2 (EC 2.7.11.1)(CK2/CSNK2) is a serine/threonine-selective protein kinase that has been implicated in cell cycle control, DNA repair, regulation of the circadian rhythm, and other cellular processes. De-regulation of CK2 has been linked to tumorigenesis as a potential protection mechanism for mutated cells. Proper CK2 function is necessary for survival of cells as no knockout models have been successfully generated. [1]

Contents

Structure

Ribbon structure of CK2 tetramer containing two a and two b subunits Tertiary Structure of CK2 Tetramer.png
Ribbon structure of CK2 tetramer containing two α and two β subunits

CK2 typically appears as a tetramer of two α subunits; α being 42 kDa and α’ being 38 kDa, and two β subunits, each weighing in at 28 kDa. [1] The β regulatory domain only has one isoform [2] and therefore within the tetramer will have two β subunits. The catalytic α domains appear as an α or α’ variant and can either be formed in a homodimer (α & α, or α’ & α’) formation or heterodimer formation (α & α’). [2] It is worth noting that other β isoforms have been found in other organisms but not in humans. [2]

The α subunits do not require the β regulatory subunits to function, this allows dimers to form of the catalytic domains independent of β subunit transcription. The presence of these α subunits does have an effect on the phosphorylation targets of CK2. [3] A functional difference between α and α’ has been found but the exact nature of differences isn’t fully understood yet. An example is that Caspase 3 is preferentially phosphorylated by α’ based tetramers over α based tetramers. [3]

Function

CK2 is a protein kinase responsible for phosphorylation of substrates in various pathways within a cell; ATP or GTP can be used as phosphate source. [1] CK2 has a dual functionality with involvement in cell growth/proliferation and suppression of apoptosis. [1] CK2s anti-apoptotic function is in the continuation of the cell cycle; from G1 to S phase and G2 to M phase checkpoints. [2] This function is achieved by protecting proteins from caspase-mediated apoptosis via phosphorylation of sites adjacent to the caspase cleavage site, blocking the activity of caspase proteins. CK2 also protects from drug-induced apoptosis via similar methods but it is not as well understood. [2] Knockdown studies of both α and α’ sub-units have been used to verify this anti-apoptotic function.

Important phosphorylation events also regulated by CK2 are found in DNA damage repair pathways, and multiple stress-signaling pathways. Examples are phosphorylation of p53 or MAPK, [2] which both regulate many interactions within their respective cellular pathways.

Another indication of separate function of α subunits is that mice that lack CK2α’ have a defect in the morphology of developing sperm. [4]

Regulation

Although the targets of CK2 are predominantly nucleus-based the protein itself is localized to both the nucleus and cytoplasm. [1] Casein kinase 2 activity has been reported to be activated following Wnt signaling pathway activation. [5] A Pertussis toxin-sensitive G protein and Dishevelled appear to be an intermediary between Wnt-mediated activation of the Frizzled receptor and activation of CK2. Further studies need to be done on the regulation of this protein due to the complexity of CK2 function and localization.

Phosphorylation of CK2α T344 has been shown to inhibit its proteasomal degradation and support binding to Pin1. O-GlcNAcylation at S347 antagonizes this phosphorylation and accelerates CK2α degradation. [6] O-GlcNAcylation of CK2α has also been shown to alter the phosphoproteome, notably including many chromatin regulators such as HDAC1, HDAC2, and HCFC1. [7]

Role in tumorigenesis

Among the array of substrates that can be altered by CK2 many of them have been found in increased prevalence in cancers of the breast, lung, colon, and prostate. [3] An increased concentration of substrates in cancerous cells infers a likely survival benefit to the cell, and activation of many of these substrates requires CK2. As well the anti-apoptotic function of CK2 allows the cancerous cell to escapes cell death and continue proliferating. Having roles in cell cycle regulation may also indicate CK2’s role in allowing cell cycle progression when normally it should have been ceased. This also promotes CK2 as a possible therapeutic target for cancer drugs. When added with other potent anti-cancer therapies, a CK2 inhibitor may increase the effectiveness of the other therapy by allowing drug-induced apoptosis to occur at a normal rate. [3]

Role in viral infection

In SARS-CoV-2 (COVID-19) infected Caco-2 cells, the phosphorylase activity of CK2 is increased resulting in phosphorylation of several cytoskeletal proteins. These infected cells also display CK2-containing filopodia protrusions associated with budding viral particles. Hence the protrusions may assist the virus in infecting adjacent cells. In these same cells, the CK2 inhibitor silmitasertib displayed potent antiviral activity. [8] Senhwa Biosciences and the US National Institutes of Health have announced that they will evaluate the efficacy of silmitasertib in treating COVID-19 infections. [9]

Protein subunits

casein kinase 2,
alpha 1 polypeptide
Identifiers
Symbol CSNK2A1
NCBI gene 1457
HGNC 2457
OMIM 115440
RefSeq NM_001895
UniProt P68400
Other data
EC number 2.7.11.1
Locus Chr. 20 p13
Search for
Structures Swiss-model
Domains InterPro
casein kinase 2,
alpha prime polypeptide
Identifiers
Symbol CSNK2A2
NCBI gene 1459
HGNC 2459
OMIM 115442
RefSeq NM_001896
UniProt P19784
Other data
EC number 2.7.11.1
Locus Chr. 16
Search for
Structures Swiss-model
Domains InterPro
casein kinase 2,
beta polypeptide
Identifiers
Symbol CSNK2B
NCBI gene 1460
HGNC 2460
OMIM 115441
RefSeq NM_001320
UniProt P67870
Other data
EC number 2.7.11.1
Locus Chr. 6 p21.3
Search for
Structures Swiss-model
Domains InterPro

See also

Related Research Articles

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

<span class="mw-page-title-main">Myristoylation</span>

Myristoylation is a lipidation modification where a myristoyl group, derived from myristic acid, is covalently attached by an amide bond to the alpha-amino group of an N-terminal glycine residue. Myristic acid is a 14-carbon saturated fatty acid (14:0) with the systematic name of n-Tetradecanoic acid. This modification can be added either co-translationally or post-translationally. N-myristoyltransferase (NMT) catalyzes the myristic acid addition reaction in the cytoplasm of cells. This lipidation event is the most found type of fatty acylation and is common among many organisms including animals, plants, fungi, protozoans and viruses. Myristoylation allows for weak protein–protein and protein–lipid interactions and plays an essential role in membrane targeting, protein–protein interactions and functions widely in a variety of signal transduction pathways.

<span class="mw-page-title-main">Phosphoinositide 3-kinase</span> Class of enzymes

Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer.

The Casein kinase 1 family of protein kinases are serine/threonine-selective enzymes that function as regulators of signal transduction pathways in most eukaryotic cell types. CK1 isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling of transcription factors, DNA repair, and DNA transcription.

<span class="mw-page-title-main">Protein kinase R</span> Protein-coding gene in the species Homo sapiens

Protein kinase RNA-activated also known as protein kinase R (PKR), interferon-induced, double-stranded RNA-activated protein kinase, or eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 gene.

<span class="mw-page-title-main">Phosphorylase kinase</span>

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase “a” form over the less active glycogen phosphorylase b.

<span class="mw-page-title-main">Caspase-9</span> Protein-coding gene in the species Homo sapiens

Caspase-9 is an enzyme that in humans is encoded by the CASP9 gene. It is an initiator caspase, critical to the apoptotic pathway found in many tissues. Caspase-9 homologs have been identified in all mammals for which they are known to exist, such as Mus musculus and Pan troglodytes.

Inhibitors of apoptosis are a group of proteins that mainly act on the intrinsic pathway that block programmed cell death, which can frequently lead to cancer or other effects for the cell if mutated or improperly regulated. Many of these inhibitors act to block caspases, a family of cysteine proteases that play an integral role in apoptosis. Some of these inhibitors include the Bcl-2 family, viral inhibitor crmA, and IAP's.

<span class="mw-page-title-main">CSNK1D</span> Protein-coding gene in the species Homo sapiens

Casein kinase I isoform delta also known as CKI-delta or CK1δ is an enzyme that in humans is encoded by the gene CSNK1D, which is located on chromosome 17 (17q25.3). It is a member of the CK1 family of serine/threonine specific eukaryotic protein kinases encompassing seven distinct isoforms as well as various post-transcriptionally processed splice variants in mammalians. Meanwhile, CK1δ homologous proteins have been isolated from organisms like yeast, basidiomycetes, plants, algae, and protozoa.

The IκB kinase is an enzyme complex that is involved in propagating the cellular response to inflammation.

<span class="mw-page-title-main">MAPK14</span>

Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.

<span class="mw-page-title-main">Casein kinase 2, alpha 1</span>

Casein kinase II subunit alpha is an enzyme that in humans is encoded by the CSNK2A1 gene.

<span class="mw-page-title-main">CSNK2A2</span> Protein-coding gene in the species Homo sapiens

Casein kinase II subunit alpha' is an enzyme that in humans is encoded by the CSNK2A2 gene.

<span class="mw-page-title-main">AXIN1</span> Protein-coding gene in the species Homo sapiens

Axin-1 is a protein that in humans is encoded by the AXIN1 gene.

<span class="mw-page-title-main">CSNK2B</span>

Casein kinase II subunit beta is a protein that in humans is encoded by the CSNK2B gene.

<span class="mw-page-title-main">DNA damage-inducible transcript 3</span> Protein-coding gene in the species Homo sapiens

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene. It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of DNA-binding transcription factors. The protein functions as a dominant-negative inhibitor by forming heterodimers with other C/EBP members, preventing their DNA binding activity. The protein is implicated in adipogenesis and erythropoiesis and has an important role in the cell's stress response.

The Akt signaling pathway or PI3K-Akt signaling pathway is a signal transduction pathway that promotes survival and growth in response to extracellular signals. Key proteins involved are PI3K and Akt.

<span class="mw-page-title-main">Caspase-activated DNase</span> Protein-coding gene in the species Homo sapiens

Caspase-activated DNase (CAD) or DNA fragmentation factor subunit beta is a protein that in humans is encoded by the DFFB gene. It breaks up the DNA during apoptosis and promotes cell differentiation. It is usually an inactive monomer inhibited by ICAD. This is cleaved before dimerization.

<i>O</i>-GlcNAc

O-GlcNAc is a reversible enzymatic post-translational modification that is found on serine and threonine residues of nucleocytoplasmic proteins. The modification is characterized by a β-glycosidic bond between the hydroxyl group of serine or threonine side chains and N-acetylglucosamine (GlcNAc). O-GlcNAc differs from other forms of protein glycosylation: (i) O-GlcNAc is not elongated or modified to form more complex glycan structures, (ii) O-GlcNAc is almost exclusively found on nuclear and cytoplasmic proteins rather than membrane proteins and secretory proteins, and (iii) O-GlcNAc is a highly dynamic modification that turns over more rapidly than the proteins which it modifies. O-GlcNAc is conserved across metazoans.

<span class="mw-page-title-main">Casein kinase 1 isoform epsilon</span>

Casein kinase I isoform epsilon or CK1ε, is an enzyme that is encoded by the CSNK1E gene in humans. It is the mammalian homolog of doubletime. CK1ε is a serine/threonine protein kinase and is very highly conserved; therefore, this kinase is very similar to other members of the casein kinase 1 family, of which there are seven mammalian isoforms. CK1ε is most similar to CK1δ in structure and function as the two enzymes maintain a high sequence similarity on their regulatory C-terminal and catalytic domains. This gene is a major component of the mammalian oscillator which controls cellular circadian rhythms. CK1ε has also been implicated in modulating various human health issues such as cancer, neurodegenerative diseases, and diabetes.

References

  1. 1 2 3 4 5 Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008). "Protein kinase CK2--a key suppressor of apoptosis". Advances in Enzyme Regulation. 48: 179–87. doi:10.1016/j.advenzreg.2008.04.002. PMC   2593134 . PMID   18492491.
  2. 1 2 3 4 5 6 Litchfield DW (2003). "Protein kinase CK2: structure, regulation and role in cellular decisions of life and death". The Biochemical Journal. 369 (Pt 1): 1–15. doi:10.1042/BJ20021469. PMC   1223072 . PMID   12396231.
  3. 1 2 3 4 Rabalski AJ, Gyenis L, Litchfield DW (2016). "Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells". Clinical Cancer Research. 22 (12): 2840–7. doi: 10.1158/1078-0432.CCR-15-1314 . PMID   27306791.
  4. Xu X, Toselli PA, Russell LD, Seldin DC (1999). "Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit". Nature Genetics. 23 (1): 118–21. doi:10.1038/12729. PMID   10471512. S2CID   21363944.
  5. Gao Y, Wang HY (2006). "Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling". The Journal of Biological Chemistry. 281 (27): 18394–400. doi: 10.1074/jbc.M601112200 . PMID   16672224.
  6. Tarrant MK, Rho HS, Xie Z, Jiang YL, Gross C, Culhane JC, et al. (January 2012). "Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis". Nature Chemical Biology. 8 (3): 262–9. doi:10.1038/nchembio.771. PMC   3288285 . PMID   22267120.
  7. Schwein, Paul A.; Ge, Yun; Yang, Bo; D’Souza, Alexandria; Mody, Alison; Shen, Dacheng; Woo, Christina M. (2022-05-20). "Writing and Erasing O-GlcNAc on Casein Kinase 2 Alpha Alters the Phosphoproteome". ACS Chemical Biology. 17 (5): 1111–1121. doi:10.1021/acschembio.1c00987. ISSN   1554-8929. PMC   9647470 . PMID   35467332.
  8. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Marrero MC, et al. (2020). "The Global Phosphorylation Landscape of SARS-CoV-2 Infection Cell". Cell. 182 (3): 685–712.e19. doi: 10.1016/j.cell.2020.06.034 . PMC   7321036 . PMID   32645325.
  9. "Senhwa Biosciences, NIH to co-develop COVID-19 drug". BioSpectrum. 27 April 2020.