PAK2

Last updated

PAK2
Protein PAK2 PDB 1e0a.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PAK2 , PAK65, PAKgamma, p21 (RAC1) activated kinase 2
External IDs OMIM: 605022; MGI: 1339984; HomoloGene: 99711; GeneCards: PAK2; OMA:PAK2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002577

NM_177326

RefSeq (protein)

NP_002568

NP_796300

Location (UCSC) Chr 3: 196.74 – 196.83 Mb Chr 16: 31.84 – 31.9 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serine/threonine-protein kinase PAK 2 is an enzyme that in humans is encoded by the PAK2 gene. [5] [6]

Contents

PAK2 is one of three members of Group I PAK family of serine/threonine kinases. [7] [8] The PAKs are evolutionary conserved. [9] PAK2 and its cleaved fragment localize in both the cytoplasmic or nuclear compartments. PAK2 signaling modulates apoptosis, [10] endothelial lumen formation, [11] viral pathogenesis, [12] and cancer including, breast, [13] hepatocarcinoma, [14] gastric [15] and cancer, at-large, [16] and, based on its kinase activity alone, peripheral nerve myelination during embryonic development. [17]

Discovery

The human PAK2 was identified as a downstream effector of Rac or Cdc42. [7] [8]

Gene and spliced variants

The PAK2 gene is about 92.7-kb long. The gene contains 15 exons and generates three alternatively spliced transcripts - two of which code proteins of 524 amino acids and 221 amino acids, while the third one is a 371-bp non-coding RNA transcript(Gene from review) There are two transcripts generated from the murine PAK2 gene, a 5.7-kb transcript coding a 524 amino acids long polypeptide and a 1.2-kb long non-coding RNA transcript.

Protein domains

Similar to PAK1, PAK2 contains a p21-binding domain (PBD) and an auto-inhibitory domain (AID) and exists in an inactive conformation. [16]

The p21 activated kinases (PAK) are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. The PAK proteins are a family of serine/threonine kinases that serve as targets for the small GTP binding proteins, CDC42 and RAC1, and have been implicated in a wide range of biological activities. The protein encoded by this gene is activated by proteolytic cleavage during caspase-mediated apoptosis, and may play a role in regulating the apoptotic events in the dying cell. [18]

Function

The p21 activated kinases (PAK) are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. The PAK proteins are a family of serine/threonine kinases that serve as targets for the small GTP binding proteins, CDC42 and RAC1, and have been implicated in a wide range of biological activities. The protein encoded by this gene is activated by proteolytic cleavage during caspase-mediated apoptosis, and may play a role in regulating the apoptotic events in the dying cell. [19] Finally, while both PAK 1 and PAK 2 proteins have been shown to be elevated during the embryonic phase, PAK 2 kinase activity specifically has been demonstrated to be a requirement during the myelenation of developing nerves. [17]

Upstream activators

PAK2 kinase activity is stimulated by transforming growth factor β in fibroblasts, [20] by proteinase inhibitor alpha2-macroglobulin binding to GRP78 in prostate cancer cells, [21] by its phosphorylation by AMP-activated protein kinase in stem and cancer cells [22] and eryptosis. [23] PAK2 is cleaved through activated caspase-3 in fibroblast and cancer cells exposed to ultraviolet, [24] hyperosmotic shock, [25] and ionizing radiation. [26]

Inhibitors

The levels of PAK2 activation in experimental systems are inhibited by synthetic PAK-inhibitors and miRs. For example, FRAX1036 differentially inhibits PAK2 and PAK1 activities; [27] FRAX597 suppresses PAK2 activity in neurofibromatosis type 2 (NF2)-associated tumorigenesis; [28] and miR-23b and miR-137 inhibits PAK2 expression in tumor cells. [29] [30] Insulin stimulation of neuronal cells also antagonizes PAK2 kinase activity, leading to an increased glucose uptake. [31]

Downstream targets

PAK2-mediated phosphorylation of merlin at S518 modulates its tumor suppressor activity, [32] c-Jun phosphorylation at T2, T8, T89, T93 and T286 contributes to the growth of growth factor-stimulated melanoma cells, [33] Caspase-7 phosphorylation at S30, T173 and S239 inhibits apoptotic activity in breast cancer cells, [13] Paxillin phosphorylation at S272 and S274 activates ADAM10 protease, [34] and STAT5 phosphorylation at S779 modulates BCL-ABL-mediated leukemogenesis. [35] PAK2 activity negatively regulates the function and expression of c-Myc: PAK2 phosphorylation of c-Myc at T358-S373-T400 inhibits its transactivation function [36] and PAK2 depletion stimulates c-Myc expression during granulocyte-monocyte lineage. [37]

Notes

Related Research Articles

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

Casein kinase 2 (CK2/CSNK2) is a serine/threonine-selective protein kinase that has been implicated in cell cycle control, DNA repair, regulation of the circadian rhythm, and other cellular processes. De-regulation of CK2 has been linked to tumorigenesis as a potential protection mechanism for mutated cells. Proper CK2 function is necessary for survival of cells as no knockout models have been successfully generated.

<span class="mw-page-title-main">PAK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene.

<span class="mw-page-title-main">ROCK1</span> Protein

ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.

<span class="mw-page-title-main">STK4</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 4 is an enzyme that in humans is encoded by the STK4 gene.

<span class="mw-page-title-main">DNA damage-inducible transcript 3</span> Human protein and coding gene

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene. It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of DNA-binding transcription factors. The protein functions as a dominant-negative inhibitor by forming heterodimers with other C/EBP members, preventing their DNA binding activity. The protein is implicated in adipogenesis and erythropoiesis and has an important role in the cell's stress response.

<span class="mw-page-title-main">PIM1</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.

<span class="mw-page-title-main">PAK3</span> Mammalian protein found in Homo sapiens

PAK3 is one of three members of Group I PAK family of evolutionary conserved serine/threonine kinases. PAK3 is preferentially expressed in neuronal cells and involved in synapse formation and plasticity and mental retardation.

<span class="mw-page-title-main">PAK4</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 4 is an enzyme that in humans is encoded by the PAK4 gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">MKNK1</span> Protein-coding gene in the species Homo sapiens

MAP kinase-interacting serine/threonine-protein kinase 1 is an enzyme that in humans is encoded by the MKNK1 gene.

<span class="mw-page-title-main">STRAP</span> Protein-coding gene in the species Homo sapiens

Serine-threonine kinase receptor-associated protein is an enzyme that in humans is encoded by the STRAP gene.

<span class="mw-page-title-main">PAK5</span>

Serine/threonine-protein kinase PAK 5 is an enzyme that in humans is encoded by the PAK5 gene.

<span class="mw-page-title-main">STK3</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 3 is an enzyme that in humans is encoded by the STK3 gene.

<span class="mw-page-title-main">SLK (gene)</span> Protein-coding gene in the species Homo sapiens

STE20-like serine/threonine-protein kinase is an enzyme that in humans is encoded by the SLK gene.

<span class="mw-page-title-main">STK24</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 24 is an enzyme that in humans is encoded by the STK24 gene located in the chromosome 13, band q32.2. It is also known as Mammalian STE20-like protein kinase 3 (MST-3). The protein is 443 amino acids long and its mass is 49 kDa.

<span class="mw-page-title-main">PAK6</span>

Serine/threonine-protein kinase PAK 6 is an enzyme that in humans is encoded by the PAK6 gene.

The Akt signaling pathway or PI3K-Akt signaling pathway is a signal transduction pathway that promotes survival and growth in response to extracellular signals. Key proteins involved are PI3K and Akt.

<span class="mw-page-title-main">Rho-associated protein kinase</span>

Rho-associated protein kinase (ROCK) is a kinase belonging to the AGC family of serine-threonine specific protein kinases. It is involved mainly in regulating the shape and movement of cells by acting on the cytoskeleton.

The CIP/KIP family is one of two families of mammalian cyclin dependent kinase (CDK) inhibitors (CKIs) involved in regulating the cell cycle. The CIP/KIP family is made up of three proteins: p21cip1/waf1, P27kip1, p57kip2 These proteins share sequence homology at the N-terminal domain which allows them to bind to both the cyclin and CDK. Their activity primarily involves the binding and inhibition of G1/S- and S-Cdks; however, they have also been shown to play an important role in activating the G1-CDKs CDK4 and CDK6. In addition, more recent work has shown that CIP/KIP family members have a number of CDK-independent roles involving regulation of transcription, apoptosis, and the cytoskeleton.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000180370 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022781 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Martin GA, Bollag G, McCormick F, Abo A (May 1995). "A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20". The EMBO Journal. 14 (9): 1970–8. doi:10.1002/j.1460-2075.1995.tb07189.x. PMC   398296 . PMID   7744004.
  6. Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM (July 1995). "Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors". Science. 269 (5221): 221–3. Bibcode:1995Sci...269..221K. doi:10.1126/science.7618083. PMID   7618083.
  7. 1 2 Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM (July 1995). "Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors". Science. 269 (5221): 221–3. Bibcode:1995Sci...269..221K. doi:10.1126/science.7618083. PMID   7618083.
  8. 1 2 Manser E, Chong C, Zhao ZS, Leung T, Michael G, Hall C, Lim L (October 1995). "Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family". The Journal of Biological Chemistry. 270 (42): 25070–8. doi: 10.1074/jbc.270.42.25070 . PMID   7559638.
  9. Kumar A, Molli PR, Pakala SB, Bui Nguyen TM, Rayala SK, Kumar R (July 2009). "PAK thread from amoeba to mammals". Journal of Cellular Biochemistry. 107 (4): 579–85. doi:10.1002/jcb.22159. PMC   2718766 . PMID   19350548.
  10. Bokoch GM (August 1998). "Caspase-mediated activation of PAK2 during apoptosis: proteolytic kinase activation as a general mechanism of apoptotic signal transduction?". Cell Death and Differentiation. 5 (8): 637–45. doi: 10.1038/sj.cdd.4400405 . PMID   10200518.
  11. Davis GE, Koh W, Stratman AN (December 2007). "Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices". Birth Defects Research. Part C, Embryo Today. 81 (4): 270–85. doi:10.1002/bdrc.20107. PMID   18228260.
  12. Van den Broeke C, Radu M, Chernoff J, Favoreel HW (March 2010). "An emerging role for p21-activated kinases (Paks) in viral infections". Trends in Cell Biology. 20 (3): 160–9. doi:10.1016/j.tcb.2009.12.005. PMC   6489496 . PMID   20071173.
  13. 1 2 Li X, Wen W, Liu K, Zhu F, Malakhova M, Peng C, Li T, Kim HG, Ma W, Cho YY, Bode AM, Dong Z, Dong Z (June 2011). "Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines". The Journal of Biological Chemistry. 286 (25): 22291–9. doi: 10.1074/jbc.M111.236596 . PMC   3121375 . PMID   21555521.
  14. Sato M, Matsuda Y, Wakai T, Kubota M, Osawa M, Fujimaki S, Sanpei A, Takamura M, Yamagiwa S, Aoyagi Y (June 2013). "P21-activated kinase-2 is a critical mediator of transforming growth factor-β-induced hepatoma cell migration". Journal of Gastroenterology and Hepatology. 28 (6): 1047–55. doi:10.1111/jgh.12150. PMID   23425030. S2CID   23620441.
  15. Gao C, Ma T, Pang L, Xie R (March 2014). "Activation of P21-activated protein kinase 2 is an independent prognostic predictor for patients with gastric cancer". Diagnostic Pathology. 9: 55. doi: 10.1186/1746-1596-9-55 . PMC   3975179 . PMID   24621074.
  16. 1 2 Kumar R, Li DQ (2016). "PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology". Advances in Cancer Research. 130: 137–209. doi:10.1016/bs.acr.2016.01.002. ISBN   978-0-12-804789-7. PMID   27037753.
  17. 1 2 Hu B, Moiseev D, Schena I, Faezov B, Dunbrack R, Chernoff J, Li J (2024). "PAK2 is necessary for myelination in the peripheral nervous system". Brain. 147 (5): 1809–1821. doi:10.1093/brain/awad413. PMC   11068108 . PMID   38079473 . Retrieved 2024-08-07.
  18. "Entrez Gene: PAK2 p21 (CDKN1A)-activated kinase 2".
  19. "Entrez Gene: PAK2 p21 (CDKN1A)-activated kinase 2".
  20. Wilkes MC, Murphy SJ, Garamszegi N, Leof EB (December 2003). "Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3". Molecular and Cellular Biology. 23 (23): 8878–89. doi:10.1128/mcb.23.23.8878-8889.2003. PMC   262664 . PMID   14612425.
  21. Misra UK, Deedwania R, Pizzo SV (July 2005). "Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK". The Journal of Biological Chemistry. 280 (28): 26278–86. doi: 10.1074/jbc.M414467200 . PMC   1201553 . PMID   15908432.
  22. Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, Villén J, Wang B, Kim SR, Sakamoto K, Gygi SP, Cantley LC, Yaffe MB, Shokat KM, Brunet A (December 2011). "Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis". Molecular Cell. 44 (6): 878–92. doi:10.1016/j.molcel.2011.11.005. PMC   3246132 . PMID   22137581.
  23. Zelenak C, Föller M, Velic A, Krug K, Qadri SM, Viollet B, Lang F, Macek B (April 2011). "Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK2 kinase in eryptosis". Journal of Proteome Research. 10 (4): 1690–7. doi:10.1021/pr101004j. PMID   21214270.
  24. Tang TK, Chang WC, Chan WH, Yang SD, Ni MH, Yu JS (September 1998). "Proteolytic cleavage and activation of PAK2 during UV irradiation-induced apoptosis in A431 cells" (PDF). Journal of Cellular Biochemistry. 70 (4): 442–54. doi:10.1002/(sici)1097-4644(19980915)70:4<442::aid-jcb2>3.3.co;2-n. PMID   9712143.
  25. Chan WH, Yu JS, Yang SD (March 1999). "PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress". Journal of Cellular Physiology. 178 (3): 397–408. doi:10.1002/(SICI)1097-4652(199903)178:3<397::AID-JCP14>3.0.CO;2-2. PMID   9989786. S2CID   35684065.
  26. Roig J, Traugh JA (October 1999). "p21-activated protein kinase gamma-PAK is activated by ionizing radiation and other DNA-damaging agents. Similarities and differences to alpha-PAK". The Journal of Biological Chemistry. 274 (44): 31119–22. doi: 10.1074/jbc.274.44.31119 . PMID   10531298.
  27. Ong CC, Gierke S, Pitt C, Sagolla M, Cheng CK, Zhou W, et al. (April 2015). "Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents". Breast Cancer Research. 17 (1): 59. doi: 10.1186/s13058-015-0564-5 . PMC   4445529 . PMID   25902869.
  28. Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, Duron S, Campbell D, Chernoff J, Field J, Marmorstein R, Kissil JL (October 2013). "FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas". The Journal of Biological Chemistry. 288 (40): 29105–14. doi: 10.1074/jbc.M113.510933 . PMC   3790009 . PMID   23960073.
  29. Pellegrino L, Krell J, Roca-Alonso L, Stebbing J, Castellano L (2012). "MicroRNA-23b regulates cellular architecture and impairs motogenic and invasive phenotypes during cancer progression". Bioarchitecture. 3 (4): 119–24. doi:10.4161/bioa.26134. PMC   4201606 . PMID   24002530.
  30. Hao S, Luo C, Abukiwan A, Wang G, He J, Huang L, Weber CE, Lv N, Xiao X, Eichmüller SB, He D (December 2015). "miR-137 inhibits proliferation of melanoma cells by targeting PAK2". Experimental Dermatology. 24 (12): 947–52. doi:10.1111/exd.12812. PMID   26186482. S2CID   29618231.
  31. Varshney P, Dey CS (July 2016). "P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells". Molecular and Cellular Endocrinology. 429: 50–61. doi:10.1016/j.mce.2016.03.035. PMID   27040307. S2CID   34525487.
  32. Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K (November 2004). "Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression". Oncogene. 23 (52): 8447–54. doi:10.1038/sj.onc.1207794. PMID   15378014. S2CID   13480894.
  33. Li T, Zhang J, Zhu F, Wen W, Zykova T, Li X, Liu K, Peng C, Ma W, Shi G, Dong Z, Bode AM, Dong Z (May 2011). "P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation". Carcinogenesis. 32 (5): 659–66. doi:10.1093/carcin/bgq271. PMC   3086698 . PMID   21177766.
  34. Lee JH, Wittki S, Bräu T, Dreyer FS, Krätzel K, Dindorf J, Johnston IC, Gross S, Kremmer E, Zeidler R, Schlötzer-Schrehardt U, Lichtenheld M, Saksela K, Harrer T, Schuler G, Federico M, Baur AS (February 2013). "HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases". Molecular Cell. 49 (4): 668–79. doi: 10.1016/j.molcel.2012.12.004 . PMID   23317503.
  35. Berger A, Hoelbl-Kovacic A, Bourgeais J, Hoefling L, Warsch W, Grundschober E, Uras IZ, Menzl I, Putz EM, Hoermann G, Schuster C, Fajmann S, Leitner E, Kubicek S, Moriggl R, Gouilleux F, Sexl V (March 2014). "PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis". Leukemia. 28 (3): 629–41. doi:10.1038/leu.2013.351. PMC   3948164 . PMID   24263804.
  36. Huang Z, Traugh JA, Bishop JM (February 2004). "Negative control of the Myc protein by the stress-responsive kinase Pak2". Molecular and Cellular Biology. 24 (4): 1582–94. doi:10.1128/mcb.24.4.1582-1594.2004. PMC   344192 . PMID   14749374.
  37. Zeng Y, Broxmeyer HE, Staser K, Chitteti BR, Park SJ, Hahn S, Cooper S, Sun Z, Jiang L, Yang X, Yuan J, Kosoff R, Sandusky G, Srour EF, Chernoff J, Clapp DW (May 2015). "Pak2 regulates hematopoietic progenitor cell proliferation, survival, and differentiation". Stem Cells. 33 (5): 1630–41. doi:10.1002/stem.1951. PMC   4409559 . PMID   25586960.