Rhodoquinone

Last updated
Rhodoquinone
Rhodoquinone.svg
Names
IUPAC name
5-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaenyl]-2-amino-3-methoxy-6-methylcyclohexa-2,5-diene-1,4-dione
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C58H89NO3/c1-43(2)23-14-24-44(3)25-15-26-45(4)27-16-28-46(5)29-17-30-47(6)31-18-32-48(7)33-19-34-49(8)35-20-36-50(9)37-21-38-51(10)39-22-40-52(11)41-42-54-53(12)56(60)55(59)58(62-13)57(54)61/h23,25,27,29,31,33,35,37,39,41H,14-22,24,26,28,30,32,34,36,38,40,42,59H2,1-13H3/b44-25+,45-27+,46-29+,47-31+,48-33+,49-35+,50-37+,51-39+,52-41+
    Key: WDVDSFZLRFLVJT-AVRCVIBKSA-N
  • CC1=C(C(=O)C(=C(C1=O)N)OC)C/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CCC=C(C)C
Properties
C58H89NO3
Molar mass 848.354 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Rhodoquinone (RQ) is a modified ubiquinone-like molecule that is an important cofactor used in anaerobic energy metabolism by many organisms. Recently, it has gained attention as a potential anthelmintic drug target due to the fact that parasitic hosts do not synthesize or use this cofactor. Because this cofactor is used in low oxygen environments, many helminth-like organisms have adapted to survive host environments such as the areas within the gastrointestinal tracks. [1] [2]

Biosynthesis

Currently the biosynthesis of rhodoquinone (RQ) is still being debated, but there are two main biosynthetic pathways that are being researched. The first pathway requires the organism to produce ubiquinone (UQ) before the amino group can be added onto the quinone ring. The second pathway allows RQ to be synthesized without any UQ being present by using tryptophan metabolites instead. [3]

Figure 1. Proposed biosynthesis of rhodoquinone Rhodoquinone-biosynthesis-1a.png
Figure 1. Proposed biosynthesis of rhodoquinone

In the case of the prokaryotic organism R. rubrum, RQ has been shown to be synthesized by addition of an amino group to a pre-existing UQ; thus UQ needs to be present as a precursor before RQ can be made. Figure 1 shows the biosynthesis of UQ in yeast and E. coli where ‘n’ represents the number of isoprene units between various organisms. Dimethylallyl diphosphate A and isopentyl diphosphate B come together to form polyisoprenyl diphosphate C. With the addition of p-hydroxybenzoic acid, the product that arises is 3-polyprenyl-4-hydroxybenzoic acid D. The next three steps of synthesis varies between different organisms, but molecule E is made across all organisms and through oxidation, demethyldemethoxyubiquinone (DDMQ) is eventually formed. RQ has been theorized to be synthesized from DDMQn, DMQn, DMeQn, or UQn, as shown with the dashed arrows. Recent studies have shown that Path 4 - RQ biosynthesis via UQ, is the favored route. [4] It has been further shown that the gene rquA is required for the biosynthesis of RQ in R. rubrum, and that RquA catalyzes the conversion of UQ to RQ. [5] [6] The RquA protein uses S-adenosyl-L-methionine as the amino donor to convert UQ to RQ in an unusual Mn(II)-catalyzed reaction. [7]

Figure 2. Alternative proposed biosynthesis for rhodoquinone Rhodoquinone-biosynthesis-1b.png
Figure 2. Alternative proposed biosynthesis for rhodoquinone

Research in C. elegans has shown an alternative path for production of RQ. Even after knocking out all UQ production, RQ is still present within those mutant strains. Based on this data, RQ production is not solely based on UQ-like molecules and instead can be made via tryptophan metabolites. Therefore, the amino group that is added in late stages of RQ biosynthesis in rquA-containing species is instead present throughout intermediate stages of RQ biosynthesis in C. elegans. With this proposed biosynthesis, the kynurenine pathway still needs to be upregulated, and activity from certain genes like kynu-1 which encodes for the KYNU-1 enzyme that catalyzes production of 3-hydroxy-L-kynurenine to 3-hydroxyanthranilic acid, needs to be upheld. [8] [9] Recent work has revealed that alternative splicing of the coq-2 polyprenyltransferase gene controls the level of RQ in animals. [10] Animals that produce RQ (e.g. C. elegans and helminth parasites) contain both COQ-2 protein isoforms (COQ-2a and COQ-2e), and COQ-2e catalyzes prenylation of 3-hydroxyanthranilic acid (instead of p-hydroxybenzoic acid) which leads to RQ.

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules constituting nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Threonine</span> Amino acid

Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.

<span class="mw-page-title-main">Coenzyme A</span> Coenzyme, notable for its synthesis and oxidation role

Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate. In humans, CoA biosynthesis requires cysteine, pantothenate (vitamin B5), and adenosine triphosphate (ATP).

<i>Nanoarchaeum equitans</i> Species of archaeon

Nanoarchaeum equitans is a species of marine archaea that was discovered in 2002 in a hydrothermal vent off the coast of Iceland on the Kolbeinsey Ridge by Karl Stetter. It has been proposed as the first species in a new phylum, and is the only species within the genus Nanoarchaeum. Strains of this microbe were also found on the Sub-polar Mid Oceanic Ridge, and in the Obsidian Pool in Yellowstone National Park. Since it grows in temperatures approaching boiling, at about 80 °C (176 °F), it is considered to be a thermophile. It grows best in environments with a pH of 6, and a salinity concentration of 2%. Nanoarchaeum appears to be an obligate symbiont on the archaeon Ignicoccus; it must be in contact with the host organism to survive. Nanoarchaeum equitans cannot synthesize lipids but obtains them from its host. Its cells are only 400 nm in diameter, making it the smallest known living organism, and the smallest known archaeon.

<span class="mw-page-title-main">Aminolevulinic acid synthase</span> Class of enzymes

Aminolevulinic acid synthase (ALA synthase, ALAS, or delta-aminolevulinic acid synthase) is an enzyme (EC 2.3.1.37) that catalyzes the synthesis of δ-aminolevulinic acid (ALA) the first common precursor in the biosynthesis of all tetrapyrroles such as hemes, cobalamins and chlorophylls. The reaction is as follows:

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">COQ7</span> Protein-coding gene in humans

Mitochondrial 5-demethoxyubiquinone hydroxylase, also known as coenzyme Q7, hydroxylase, is an enzyme that in humans is encoded by the COQ7 gene. The clk-1 (clock-1) gene encodes this protein that is necessary for ubiquinone biosynthesis in the worm Caenorhabditis elegans and other eukaryotes. The mouse version of the gene is called mclk-1 and the human, fruit fly and yeast homolog COQ7.

<span class="mw-page-title-main">Kynureninase</span>

Kynureninase or L-Kynurenine hydrolase (KYNU) is a PLP dependent enzyme that catalyses the cleavage of kynurenine (Kyn) into anthranilic acid (Ant). It can also act on 3-hydroxykynurenine and some other (3-arylcarbonyl)-alanines. Humans express one kynureninase enzyme that is encoded by the KYNU gene located on chromosome 2.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Aromatic amino acid</span> Amino acid having an aromatic ring

An aromatic amino acid is an amino acid that includes an aromatic ring.

<span class="mw-page-title-main">Dihydroorotate dehydrogenase</span> Class of enzymes

Dihydroorotate dehydrogenase (DHODH) is an enzyme that in humans is encoded by the DHODH gene on chromosome 16. The protein encoded by this gene catalyzes the fourth enzymatic step, the ubiquinone-mediated oxidation of dihydroorotate to orotate, in de novo pyrimidine biosynthesis. This protein is a mitochondrial protein located on the outer surface of the inner mitochondrial membrane (IMM). Inhibitors of this enzyme are used to treat autoimmune diseases such as rheumatoid arthritis.

<span class="mw-page-title-main">Isopentenyl-diphosphate delta isomerase</span> Class of enzymes

Isopentenyl pyrophosphate isomerase, also known as Isopentenyl-diphosphate delta isomerase, is an isomerase that catalyzes the conversion of the relatively un-reactive isopentenyl pyrophosphate (IPP) to the more-reactive electrophile dimethylallyl pyrophosphate (DMAPP). This isomerization is a key step in the biosynthesis of isoprenoids through the mevalonate pathway and the MEP pathway.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">Biosynthesis of doxorubicin</span>

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

<span class="mw-page-title-main">Kynurenine 3-monooxygenase</span> Enzyme

In enzymology, a kynurenine 3-monooxygenase (EC 1.14.13.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate lyase</span>

The enzyme chorismate lyase catalyzes the first step in ubiquinone biosynthesis, the removal of pyruvate from chorismate, to yield 4-hydroxybenzoate in Escherichia coli and other Gram-negative bacteria. It belongs to the family of lyases, specifically the oxo-acid-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is chorismate pyruvate-lyase (4-hydroxybenzoate-forming). Other names in common use include CL, CPL, and UbiC.

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">O-succinylbenzoate—CoA ligase</span>

o-Succinylbenzoate—CoA ligase, encoded from the menE gene in Escherichia coli, catalyzes the fifth reaction in the synthesis of menaquinone. This pathway is called 1, 4-dihydroxy-2-naphthoate biosynthesis I. Vitamin K is a quinone that serves as an electron transporter during anaerobic respiration. This process of anaerobic respiration allows the bacteria to generate the energy required to survive.

Radical SAMenzymes is a superfamily of enzymes that use a [4Fe-4S]+ cluster to reductively cleave S-adenosyl-L-methionine (SAM) to generate a radical, usually a 5′-deoxyadenosyl radical (5'-dAdo), as a critical intermediate. These enzymes utilize this radical intermediate to perform diverse transformations, often to functionalize unactivated C-H bonds. Radical SAM enzymes are involved in cofactor biosynthesis, enzyme activation, peptide modification, post-transcriptional and post-translational modifications, metalloprotein cluster formation, tRNA modification, lipid metabolism, biosynthesis of antibiotics and natural products etc. The vast majority of known radical SAM enzymes belong to the radical SAM superfamily, and have a cysteine-rich motif that matches or resembles CxxxCxxC. Radical SAM enzymes comprise the largest superfamily of metal-containing enzymes.

<span class="mw-page-title-main">Coenzyme Q5, methyltransferase</span> Enzyme found in humans

Coenzyme Q5, methyltransferase, more commonly known as COQ5, is an enzyme involved in the electron transport chain. COQ5 is located within the mitochondrial matrix and is a part of the biosynthesis of ubiquinone.

References

  1. "[Prevention and control of schistosomiasis and soil-transmitted helminthiasis:report of a WHO expert committee]". World Health Organization. 49 (3): 57. June 2012. ISBN   978-9241209120.
  2. Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, et al. (April 2018). "Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis". eLife. 7. doi: 10.7554/eLife.34292 . PMC   5953543 . PMID   29697049.
  3. Salinas G, Langelaan DN, Shepherd JN (November 2020). "Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1861 (11): 148278. doi: 10.1016/j.bbabio.2020.148278 . PMID   32735860.
  4. Brajcich BC, Iarocci AL, Johnstone LA, Morgan RK, Lonjers ZT, Hotchko MJ, et al. (January 2010). "Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum". Journal of Bacteriology. 192 (2): 436–445. doi: 10.1128/JB.01040-09 . PMC   2805321 . PMID   19933361.
  5. Lonjers ZT, Dickson EL, Chu TP, Kreutz JE, Neacsu FA, Anders KR, Shepherd JN (March 2012). "Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum". Journal of Bacteriology. 194 (5): 965–971. doi: 10.1128/JB.06319-11 . PMC   3294814 . PMID   22194448.
  6. Bernert AC, Jacobs EJ, Reinl SR, Choi CC, Roberts Buceta PM, Culver JC, et al. (September 2019). "Recombinant RquA catalyzes the in vivo conversion of ubiquinone to rhodoquinone in Escherichia coli and Saccharomyces cerevisiae". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1864 (9): 1226–1234. doi:10.1016/j.bbalip.2019.05.007. PMC   6874216 . PMID   31121262.
  7. Neupane T, Chambers LR, Godfrey AJ, Monlux MM, Jacobs EJ, Whitworth S, et al. (August 2022). "Microbial rhodoquinone biosynthesis proceeds via an atypical RquA-catalyzed amino transfer from S-adenosyl-L-methionine to ubiquinone". Communications Chemistry. 5 (1): 89. doi: 10.1038/s42004-022-00711-6 . PMC   9814641 . PMID   36697674.
  8. Roberts Buceta PM, Romanelli-Cedrez L, Babcock SJ, Xun H, VonPaige ML, Higley TW, et al. (July 2019). "The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans". The Journal of Biological Chemistry. 294 (28): 11047–11053. doi: 10.1074/jbc.AC119.009475 . PMC   6635453 . PMID   31177094.
  9. Del Borrello S, Lautens M, Dolan K, Tan JH, Davie T, Schertzberg MR, et al. (June 2019). "Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway". eLife. 8. doi: 10.7554/eLife.48165 . PMC   6656428 . PMID   31232688.
  10. Tan JH, Lautens M, Romanelli-Cedrez L, Wang J, Schertzberg MR, Reinl SR, et al. (August 2020). "Alternative splicing of coq-2 controls the levels of rhodoquinone in animals". eLife. 9: e56376. doi: 10.7554/eLife.56376 . PMC   7434440 . PMID   32744503.