Richard Jefferson | |
---|---|
Born | Richard Anthony Jefferson 1956 |
Citizenship | United States of America; Australia |
Alma mater | |
Known for |
|
Awards | website = www |
Scientific career | |
Institutions | |
Thesis | DNA Transformation of Caenorhabditis elegans Development and Application of a New Gene Fusion System (Cloning, Chimeric, Sequence) (1985) |
Doctoral advisor | David I. Hirsh, William B. Wood |
Richard Anthony Jefferson (born 1956) is an American-born molecular biologist and social entrepreneur who developed the widely used reporter gene system GUS, [3] conducted the world's first biotech crop release, proposed the Hologenome theory of evolution, pioneered Biological Open Source and founded The Lens. He is founder of the social enterprise Cambia and a professor of Biological Innovation at the Queensland University of Technology. In 2003, he was named by Scientific American as one of the world's 50 most influential technologists, and is renowned for his work on making science-enabled innovation more widely accessible. [4] [5] He was profiled in 'Open & Shut: The Basement Interviews', [6] and other major media, including in an Economist Feature 'Grassroots Innovator' in 2001. [7]
Born in Santa Cruz, California, Jefferson studied at the University of California, Santa Barbara at the College of Creative Studies, and obtained his BA (Molecular Genetics) in 1978. He then moved to the University of Colorado Boulder for his Ph.D., where he first developed the GUS reporter system, isolating, sequencing and characterizing the first microbial glucuronidase, [3] [8] and creating transgenic technology for Caenorhabditis elegans [9]
As a postdoctoral researcher he worked at the Plant Breeding Institute in Cambridge, England: there he adapted the GUS assay for the use in plants. [3] His GUS system was a breakthrough in plant molecular sciences, useful for the development of efficient transformation methods for crop plants, and cell and developmental biology. In 1986-87, he sent all the components of the GUS system (DNA and strains) together with a comprehensive users' manual to nearly a thousand labs worldwide, before publication, pioneering a biological open source paradigm and a rapid uptake of the technology. The GUS system and its novel mode of dissemination was said to be essential for development of transformation of the most important crops, including soybean, maize, cotton and rice. The work has been cited in the primary literature almost 15,000 times, [10] and has been licensed by every major company in crop genetics.
During his postdoc in Cambridge, he also initiated and managed, with his colleague Michael W. Bevan, the world's first field release of a transgenic food crop (June 1, 1987), in Trumpington, near Cambridge, UK. [11] [12] The planting date of the experiment was serendipitously one day before that of Monsanto, in Jerseyville, Illinois, which has been widely but incorrectly viewed as the first such trial. [13] [14]
In 1989, driven by a need to see the tools of science more broadly accessible and more effectively used in complex environments, Jefferson joined the Food and Agriculture Organization of the United Nations (FAO) as senior scientist, the first molecular biologist in this position. Since then he traveled, worked and taught in many developing countries. He left the organization in 1991 to start a non-profit private social enterprise, Cambia. Cambia soon moved to Australia, due to Jefferson's involvement in the Asian rice biotechnology programs of the Rockefeller Foundation, [11] and the proximity to almost half the world's agricultural population.
In September 1994, Jefferson first articulated the Hologenome Theory of Evolution, at a presentation at Cold Spring Harbor Laboratory, at a Symposium "A Decade of PCR" [15] This theory was developed from his molecular and genetic work on glucuronide metabolism by vertebrate-associated microbes, including the role of glucuronidases, sulfatases and other enzymes in modulating and effecting enterohepatic circulation of steroid hormones. The levels, ratios and timing of steroid hormone de-conjugation (activation) and resorption modulates virtually all aspects of vertebrate ontogeny, physiology and reproduction. The premise for his theory was that natural selection acts on the holobiont comprising a 'scaffold genome' and myriad microbial constituents in diverse ecosystems, selecting for persistence of the set of genetically encoded capabilities.
In January 1997, the hologenome theory was extended, informed by further work on the molecular genetics of enteric microbial glucuronide metabolism, to emphasize the central role of microbially-mediated hormone modulation (MHM) as an essential component of multi-cellularity and vertebrate biology. This led Jefferson to coin the term ecotherapeutics, or ecological therapeutics, stating that a major route to improved performance or health of animals or plants would be through the adjustment of microbial populations and their genetic capabilities (microbiota, often now called the microbiomes). [16]
The development of theory and its logic were also outlined in detail in his blog in 2007, [17] and summarized in a cover article Jan 9, 2013, by Carrie Arnold in New Scientist [18]
In 1999, Jefferson was appointed as Author-in-Chief to the United Nations Convention on Biological Diversity for the landmark study, submitted to the UN General Assembly, on the contentious genetic technology, colloquially called 'Terminator Technology'. In this study, [19] he coined and defined the term GURT - Genetic Use Restriction Technology and its variants.
At Cambia, and with the initial funding and partnership with Rockefeller Foundation's agriculture program, Jefferson and the Cambia staff started to develop key new tools - including the pCambia vectors, [20] released in 1997, and which now are the most widely used plasmids in plant biotechnology.
The continuous distribution of thousands of these tools without restrictions throughout the world, the dozens of conducted training courses, and the newly invented open technologies advanced what would become the Biological Open Source initiative, formally launched in 2005. That year, Jefferson and colleagues published a landmark paper in Nature, [21] in which they described a new biological open source invention, TransBacter.
Agrobacterium-mediated gene transfer was by far the most common tool for agricultural biotechnology, but due to complex and extensive patenting, and aggressive pursuit of dominant patents by Monsanto, the use of the tool was constrained to merely academic pursuits or by use of multinational corporations under license. Using Patent Lens - the most popular global open full-text patent search engine - founded by Jefferson and his colleague Carol Nottenburg in 1999 as CambiaIP Resource - Cambia published the world's first open patent landscape. [22] Using the evidence and clarity obtained from this patent landscape, Jefferson and his colleagues designed and created an effective alternative technology that would not be constrained by any of the existing patents (of which there were by then almost a thousand). The technology, called Transbacter involved using three taxes of benign plant-associated bacteria modified with the gene-transfer components from Agrobacterium, to efficiently transfer genes to diverse crop species. "Transbacter" was made available under the first BiOS (Biological Open Source) license, for free to anyone and sent to hundreds of labs worldwide, and was licensed by public sector, small enterprise and multinationals under open principles, with commitments to share improvements with other licensees. The open patent landscape, initially authored by patent experts Nottenburg and Carolina Roa-Rodriguez and later updated by several other Cambia staff, in addition to many other landscapes serve as prototypes of Jefferson's subsequent initiative; open Innovation Cartography [23]
In 2009, with funding from the Bill & Melinda Gates Foundation, The Lemelson Foundation and the Gordon & Betty Moore Foundation, Jefferson moved with part of Cambia to the Queensland University of Technology (QUT) in Brisbane, Australia, as Professor of Science, Technology & Law, to direct the global activities on open Innovation Cartography. [24]
Known also for his expertise in intellectual property, Jefferson remains active in the promotion of open source biological innovation which has been covered extensively by global media. [25] He served on the World Economic Forum's Global Agenda Council on Intellectual Property for four years, and is on the WEF's Global Agenda Council on the Economics of Innovation. In 2013, Cambia launched The Lens [26] to replace the older Patent Lens and enable broader innovation-focused navigation platforms. Jefferson is considered a global leader in social entrepreneurship and is an Outstanding Social Entrepreneur of the Schwab Foundation, [27] and a plenary speaker at the Skoll World Forum. [28] Jefferson was also a keynote speaker at Consilience 2016, organised by National Law School of India University, Bengaluru on Intellectual Property and the Commons. [29]
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms.
Plant pathology or phytopathology is the scientific study of plant diseases caused by pathogens and environmental conditions. Plant pathology involves the study of pathogen identification, disease etiology, disease cycles, economic impact, plant disease epidemiology, plant disease resistance, how plant diseases affect humans and animals, pathosystem genetics, and management of plant diseases.
The department of plant and microbial biology is an academic department in the Rausser College of Natural Resources at the University of California, Berkeley. The department conducts extensive research, provides undergraduate and graduate programs, and educates students in the fields of plant and microbial sciences with 43 department faculty members.
Cambia is an Australian-based global non-profit social enterprise focusing on open science, biology, innovation system reform and intellectual property. Its projects include The Lens, formerly known as Patent Lens, and the Biological Innovation for Open Society Initiative.
Pharming, a portmanteau of farming and pharmaceutical, refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO). Pharming is also known as molecular farming, molecular pharming, or biopharming.
BiOS is an international initiative to foster innovation and freedom to operate in the biological sciences. BiOS was officially launched on 10 February 2005 by Cambia, an independent, international non-profit organization dedicated to democratizing innovation. Its intention is to initiate new norms and practices for creating tools for biological innovation, using binding covenants to protect and preserve their usefulness, while allowing diverse business models for the application of these tools.
β-Glucuronidases are members of the glycosidase family of enzymes that catalyze breakdown of complex carbohydrates. Human β-glucuronidase is a type of glucuronidase that catalyzes hydrolysis of β-D-glucuronic acid residues from the non-reducing end of mucopolysaccharides such as heparan sulfate. Human β-glucuronidase is located in the lysosome. In the gut, brush border β-glucuronidase converts conjugated bilirubin to the unconjugated form for reabsorption. β-Glucuronidase is also present in breast milk, which contributes to neonatal jaundice. The protein is encoded by the GUSB gene in humans and by the uidA gene in bacteria.
Genetic use restriction technology (GURT), also known as terminator technology or suicide seeds, is designed to restrict access to "genetic materials and their associated phenotypic traits." The technology works by activating specific genes using a controlled stimulus in order to cause second generation seeds to be either infertile or to not have one or more of the desired traits of the first generation plant. GURTs can be used by agricultural firms to enhance protection of their innovations in genetically modified organisms by making it impossible for farmers to reproduce the desired traits on their own. Another possible use is to prevent the escape of genes from genetically modified organisms into the surrounding environment.
This page provides an alphabetical list of articles and other pages about biotechnology.
The GUS reporter system is a reporter gene system, particularly useful in plant molecular biology and microbiology. Several kinds of GUS reporter gene assay are available, depending on the substrate used. The term GUS staining refers to the most common of these, a histochemical technique.
Patentleft is the practice of licensing patents for royalty-free use, on the condition that adopters license related improvements they develop under the same terms. Copyleft-style licensors seek "continuous growth of a universally accessible technology commons" from which they, and others, will benefit.
The following outline is provided as an overview of and topical guide to genetics:
Roundup Ready is the Bayer trademark for its patented line of genetically modified crop seeds that are resistant to its glyphosate-based herbicide, Roundup.
The Lens, formerly called Patent Lens, is a free searcheable online patent and scholarly literature database, provided by Cambia, an Australia-based non-profit organization. The Lens has been hailed as the “most comprehensive scholarly literature database, that exceeds in its width and depth two leading commercial databases combined”. The Lens is an agglomeration database, that takes bibliometric data from other databases and combines them into one, deduplicated and with a powerful unified search syntax.
Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.
A geneticist is a biologist or physician who studies genetics, the science of genes, heredity, and variation of organisms. A geneticist can be employed as a scientist or a lecturer. Geneticists may perform general research on genetic processes or develop genetic technologies to aid in the pharmaceutical or and agriculture industries. Some geneticists perform experiments in model organisms such as Drosophila, C. elegans, zebrafish, rodents or humans and analyze data to interpret the inheritance of biological traits. A basic science geneticist is a scientist who usually has earned a PhD in genetics and undertakes research and/or lectures in the field. A medical geneticist is a physician who has been trained in medical genetics as a specialization and evaluates, diagnoses, and manages patients with hereditary conditions or congenital malformations; and provides genetic risk calculations and mutation analysis.
The hologenome theory of evolution recasts the individual animal or plant as a community or a "holobiont" – the host plus all of its symbiotic microbes. Consequently, the collective genomes of the holobiont form a "hologenome". Holobionts and hologenomes are structural entities that replace misnomers in the context of host-microbiota symbioses such as superorganism, organ, and metagenome. Variation in the hologenome may encode phenotypic plasticity of the holobiont and can be subject to evolutionary changes caused by selection and drift, if portions of the hologenome are transmitted between generations with reasonable fidelity. One of the important outcomes of recasting the individual as a holobiont subject to evolutionary forces is that genetic variation in the hologenome can be brought about by changes in the host genome and also by changes in the microbiome, including new acquisitions of microbes, horizontal gene transfers, and changes in microbial abundance within hosts. Although there is a rich literature on binary host–microbe symbioses, the hologenome concept distinguishes itself by including the vast symbiotic complexity inherent in many multicellular hosts.
X-Gluc is a chemical compound with the molecular formula C14H13BrClNO7. It is used as a reagent to detect β-glucuronidase, an enzyme produced by the E. coli bacterium. It is used to detect E. coli contamination in food, water and the urinary tract. In addition, it is widely used in molecular biology experiments to mark and select the expression of target genes (GUS reporter system).
Michael Webster Bevan is a professor at the John Innes Centre, Norwich, UK.
Howard M. Goodman is an American molecular biologist and a professor of genetics emeritus at Massachusetts General Hospital. He is best known for his role in founding the department of molecular biology at Massachusetts General Hospital.