Robert R. Caldwell

Last updated
Robert R. Caldwell
Nationality American
Alma mater Washington University in St Louis (A.B.)
University of Wisconsin-Milwaukee (Ph.D.)
Scientific career
Fields Theoretical physics, Cosmology
Institutions Dartmouth College
Doctoral advisor Bruce Allen [1]

Robert R. Caldwell is an American theoretical physicist and Professor of Physics and Astronomy at Dartmouth College. His research interests include cosmology and gravitation. [2] He is known primarily for his work on theories of cosmic acceleration, [3] in particular dark energy, quintessence, [4] and the Big Rip scenario. [5] [6]

Contents

Career

Caldwell received an A.B. from Washington University in St Louis in physics and French in 1987, and a Ph.D. from the University of Wisconsin-Milwaukee in 1992. He was a postdoctoral fellow at Fermilab (1992-4), the University of Cambridge (1994-6, as a member of Hawking’s group [7] ), the University of Pennsylvania (1996-8), and Princeton University (1998-2000). He has been on the faculty of Dartmouth College as an assistant professor (2000), associate professor (2005), and full professor (2010). [8] He was elected Fellow of the American Physical Society in 2008. [9]

Related Research Articles

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered during 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, we can use the observed brightness of these supernovae to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther an object is from us, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerated rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988) and Wetterich (1988). The concept was expanded to more general types of time-varying dark energy, and the term "quintessence" was first introduced in a 1998 paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will become infinite. According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. However, this expansion is similar for every moment of time, and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time.

A cyclic model is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 theorized a universe following an eternal series of oscillations, each beginning with a Big Bang and ending with a Big Crunch; in the interim, the universe would expand for a period of time before the gravitational attraction of matter causes it to collapse back in and undergo a bounce.

<span class="mw-page-title-main">False vacuum decay</span> Hypothetical vacuum, less stable than true vacuum

In quantum field theory, a false vacuum is a hypothetical vacuum that is relatively stable, but not in the most stable state possible. This condition is known as metastable. It may last for a very long time in that state, but could eventually decay to the more stable state, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.

Phantom energy is a hypothetical form of dark energy satisfying the equation of state with . It possesses negative kinetic energy, and predicts expansion of the universe in excess of that predicted by a cosmological constant, which leads to a Big Rip. The idea of phantom energy is often dismissed, as it would suggest that the vacuum is unstable with negative mass particles bursting into existence. The concept is hence tied to emerging theories of a continuously-created negative mass dark fluid, in which the cosmological constant can vary as a function of time.

<span class="mw-page-title-main">Paul Steinhardt</span> American theoretical physicist (born 1952)

Paul Joseph Steinhardt is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University, where he is on the faculty of both the Departments of Physics and of Astrophysical Sciences.

Savas Dimopoulos is a particle physicist at Stanford University. He worked at CERN from 1994 to 1997. Dimopoulos is well known for his work on constructing theories beyond the Standard Model.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions.

In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time. Measurements of the cosmic microwave background (CMB) suggest the universe began in a hot Big Bang, from which general relativity explains its evolution and the subsequent large-scale motion. Without introducing a new form of energy, there was no way to explain an accelerating expansion of the universe. Since the 1990s, dark energy has been the most accepted premise to account for the accelerated expansion. As of 2021, there are active areas of cosmology research to understand the fundamental nature of dark energy. Assuming that the lambda-CDM model of cosmology is correct, as of 2013, the best current measurements indicate that dark energy contributes 68% of the total energy in the present-day observable universe. The mass–energy of dark matter and ordinary (baryonic) matter contributes 26% and 5%, respectively, and other components such as neutrinos and photons contribute a very small amount. Dark energy's density is very low: 6×10−10 J/m3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

A strangelet is a hypothetical particle consisting of a bound state of roughly equal numbers of up, down, and strange quarks. An equivalent description is that a strangelet is a small fragment of strange matter, small enough to be considered a particle. The size of an object composed of strange matter could, theoretically, range from a few femtometers across to arbitrarily large. Once the size becomes macroscopic, such an object is usually called a strange star. The term "strangelet" originates with Edward Farhi and Robert Jaffe in 1984. Strangelets can convert matter to strange matter on contact. Strangelets have been suggested as a dark matter candidate.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the dense external compression needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

<span class="mw-page-title-main">Uroš Seljak</span>

Uroš Seljak is a Slovenian cosmologist and a professor of astronomy and physics at University of California, Berkeley. He is particularly well-known for his research in cosmology and approximate Bayesian statistical methods.

The "axis of evil" is a name given to the apparent correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB). It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle as assumed in the concordance model.

<span class="mw-page-title-main">Mustapha Ishak Boushaki</span> Algerian theoretical physicist

Mustapha Ishak-Boushaki is a theoretical physicist, cosmologist and professor at the University of Texas at Dallas. He is known for his contributions to the studies of cosmic acceleration and dark energy, gravitational lensing, and testing alternatives to general relativity; as well as his authorship of Testing General Relativity in Cosmology, a review article published in Living Reviews in Relativity. He was elected in 2021 as Fellow of American Association for the Advancement of Science (AAAS) with the quote: "For distinguished contributions to the field of theoretical cosmology, particularly for testing modifications to general relativity at cosmological scales, and for sustained excellence in teaching and mentoring of students."

Madappa Prakash is an Indian-American nuclear physicist and astrophysicist, known for his research on the physics of neutron stars and heavy-ion collisions.

Daniel S. Akerib is an American particle physicist and astrophysicist. He was elected in 2008 a fellow of the American Physical Society (APS).

Jean-Philippe Uzan is a French cosmologist and directeur de recherche employed by the Centre national de la recherche scientifique (CNRS).

References

  1. "Robert Caldwell - The Mathematics Genealogy Project". genealogy.math.ndsu.nodak.edu.
  2. "Robert R. Caldwell - Department of Physics and Astronomy". physics.dartmouth.edu. 2 April 2013.
  3. Caldwell, Robert R.; Kamionkowski, Marc (2009). "The Physics of Cosmic Acceleration". Annu. Rev. Nucl. Part. Sci. 59 (1): 397–429. arXiv: 0903.0866 . Bibcode:2009ARNPS..59..397C. doi:10.1146/annurev-nucl-010709-151330. S2CID   16727077.
  4. Caldwell, R.R.; Dave, R.; Steinhardt, P.J. (1998). "Cosmological Imprint of an Energy Component with General Equation-of-State". Phys. Rev. Lett. 80 (8): 1582–1585. arXiv: astro-ph/9708069 . Bibcode:1998PhRvL..80.1582C. doi:10.1103/PhysRevLett.80.1582. S2CID   597168.
  5. Caldwell, Robert R. (2002). "A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state". Phys. Lett. B545 (1–2): 23–29. arXiv: astro-ph/9908168 . Bibcode:2002PhLB..545...23C. doi:10.1016/S0370-2693(02)02589-3. S2CID   9820570.
  6. Caldwell, Robert R.; Kamionkowski, Marc; Weinberg, Nevin N. (2003). "Phantom Energy and Cosmic Doomsday". Physical Review Letters. 91 (7): 071301. arXiv: astro-ph/0302506 . Bibcode:2003PhRvL..91g1301C. doi:10.1103/PhysRevLett.91.071301. PMID   12935004. S2CID   119498512.
  7. "Dartmouth Professors Remember Stephen Hawking | Dartmouth".
  8. "Archived copy" (PDF). Archived from the original (PDF) on 2017-04-07. Retrieved 2017-04-07.{{cite web}}: CS1 maint: archived copy as title (link)
  9. "APS Physics - DAP - APS Fellowship". www.aps.org.