Rubidium–strontium dating

Last updated

The rubidium-strontium dating method is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87Rb) and strontium (87Sr, 86Sr). One of the two naturally occurring isotopes of rubidium, 87Rb, decays to 87Sr with a half-life of 49.23 billion years. The radiogenic daughter, 87Sr, produced in this decay process is the only one of the four naturally occurring strontium isotopes that was not produced exclusively by stellar nucleosynthesis predating the formation of the Solar System. Over time, decay of 87Rb increases the amount of radiogenic 87Sr while the amount of other Sr isotopes remains unchanged.

Contents

The ratio 87Sr/86Sr in a mineral sample can be accurately measured using a mass spectrometer. If the amount of Sr and Rb isotopes in the sample when it formed can be determined, the age can be calculated from the increase in 87Sr/86Sr. Different minerals that crystallized from the same silicic melt will all have the same initial 87Sr/86Sr as the parent melt. However, because Rb substitutes for K in minerals and these minerals have different K/Ca ratios, the minerals will have had different starting Rb/Sr ratios, and the final 87Sr/86Sr ratio will not have increased as much in the minerals poorer in Rb. Typically, Rb/Sr increases in the order plagioclase, hornblende, K-feldspar, biotite, muscovite. Therefore, given sufficient time for significant production (ingrowth) of radiogenic 87Sr, measured 87Sr/86Sr values will be different in the minerals, increasing in the same order. Comparison of different minerals in a rock sample thus allows scientists to infer the original 87Sr/86Sr ratio and determine the age of the rock.

In addition, Rb is a highly incompatible element that, during partial melting of the mantle, prefers to join the magmatic melt rather than remain in mantle minerals. As a result, Rb is enriched in crustal rocks relative to the mantle, and 87Sr/86Sr is higher for crust rock than mantle rock. This allows scientists to distinguish magma produced by melting of crust rock from magma produced by melting of mantle rock, even if subsequent magma differentiation produces similar overall chemistry. [1] Scientists can also estimate from 87Sr/86Sr when crust rock was first formed from magma extracted from the mantle, even if the rock is subsequently metamorphosed or even melted and recrystallized. This provides clues to the age of the Earth's continents. [2] [3]

Development of this process was aided by German chemists Otto Hahn and Fritz Strassmann, who later went on to discover nuclear fission in December 1938.

Example

For example, consider the case of an igneous rock such as a granite that contains several major Sr-bearing minerals including plagioclase feldspar, K-feldspar, hornblende, biotite, and muscovite. Each of these minerals has a different initial rubidium/strontium ratio dependent on their potassium content, the concentration of Rb and K in the melt and the temperature at which the minerals formed. Rubidium substitutes for potassium within the lattice of minerals at a rate proportional to its concentration within the melt.

The ideal scenario according to Bowen's reaction series would see a granite melt begin crystallizing a cumulate assemblage of plagioclase and hornblende (i.e.; tonalite or diorite), which is low in K (and hence Rb) but high in Sr (as this substitutes for Ca), which proportionally enriches the melt in K and Rb. This then causes orthoclase and biotite, both K rich minerals into which Rb can substitute, to precipitate. The resulting Rb-Sr ratios and Rb and Sr abundances of both the whole rocks and their component minerals will be markedly different. This, thus, allows a different rate of radiogenic Sr to evolve in the separate rocks and their component minerals as time progresses.

Calculating the age

The age of a sample is determined by analysing several minerals within multiple subsamples from different parts of the original sample. The 87Sr/86Sr ratio for each subsample is plotted against its 87Rb/86Sr ratio on a graph called an isochron. If these form a straight line then the subsamples are consistent, and the age probably reliable. The slope of the line dictates the age of the sample.

Given the universal law of radioactive decay and the following rubidium beta decay: , we obtain the expression which describes the growth of strontium-87 from the decay of rubidium-87:

being the decay constant of rubidium. Furthermore, we consider the number of as a constant, since it is stable and not radiogenic. Hence,

is the isochron equation. After measurements of Rubidum and Strontium concentration in the mineral we can easily determine the age, the t value, of the sample. [4]

Sources of error

Rb-Sr dating relies on correctly measuring the Rb-Sr ratio of a mineral or whole rock sample, plus deriving an accurate 87Sr/86Sr ratio for the mineral or whole rock sample.

Several preconditions must be satisfied before a Rb-Sr date can be considered as representing the time of emplacement or formation of a rock.

One of the major drawbacks (and, conversely, the most important use) of utilizing Rb and Sr to derive a radiometric date is their relative mobility, especially in hydrothermal fluids. Rb and Sr are relatively mobile alkaline elements and as such are relatively easily moved around by the hot, often carbonated hydrothermal fluids present during metamorphism or magmatism.

Conversely, these fluids may metasomatically alter a rock, introducing new Rb and Sr into the rock (generally during potassic alteration or calcic (albitisation) alteration. Rb-Sr can then be used on the altered mineralogy to date the time of this alteration, but not the date at which the rock formed.

Thus, assigning age significance to a result requires studying the metasomatic and thermal history of the rock, any metamorphic events, and any evidence of fluid movement. A Rb-Sr date which is at variance with other geochronometers may not be useless, it may be providing data on an event which is not representing the age of formation of the rock.

Uses

Geochronology

The Rb-Sr dating method has been used extensively in dating terrestrial and lunar rocks, and meteorites. If the initial amount of Sr is known or can be extrapolated, the age can be determined by measurement of the Rb and Sr concentrations and the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered.

The important concept in isotopic tracing is that Sr derived from any mineral through weathering reactions will have the same 87Sr/86Sr as the mineral. Although this is a potential source of error for terrestrial rocks, it is irrelevant for lunar rocks and meteorites, as there are no chemical weathering reactions in those environments.

Isotope geochemistry

Initial 87Sr/86Sr ratios are a useful tool in archaeology, forensics and paleontology because the 87Sr/86Sr of a skeleton, sea shell or indeed a clay artefact is directly comparable to the source rocks upon which it was formed or upon which the organism lived. Thus, by measuring the current-day 87Sr/86Sr ratio (and often the 143Nd-144Nd ratios as well) the geological fingerprint of an object or skeleton can be measured, allowing migration patterns to be determined.

Strontium isotope stratigraphy

Strontium isotope stratigraphy relies on recognised variations in the 87Sr/86Sr ratio of seawater over time. The application of Sr isotope stratigraphy is generally limited to carbonate samples for which the Sr seawater curve is well defined. This is well known for the Cenozoic time-scale but, due to poorer preservation of carbonate sequences in the Mesozoic and earlier, it is not completely understood for older sequences.

In older sequences diagenetic alteration combined with greater uncertainties in estimating absolute ages due to lack of overlap between other geochronometers (for example U–Th) leads to greater uncertainties in the exact shape of the Sr isotope seawater curve.

Related Research Articles

<span class="mw-page-title-main">Granite</span> Common type of intrusive, felsic, igneous rock with granular structure

Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

<span class="mw-page-title-main">Rubidium</span> Chemical element, symbol Rb and atomic number 37

Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe.

Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of Earth itself, and can also be used to date a wide range of natural and man-made materials.

Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar). Potassium is a common element found in many materials, such as feldspars, micas, clay minerals, tephra, and evaporites. In these materials, the decay product 40
Ar
is able to escape the liquid (molten) rock, but starts to accumulate when the rock solidifies (recrystallizes). The amount of argon sublimation that occurs is a function of the purity of the sample, the composition of the mother material, and a number of other factors. These factors introduce error limits on the upper and lower bounds of dating, so that the final determination of age is reliant on the environmental factors during formation, melting, and exposure to decreased pressure or open air. Time since recrystallization is calculated by measuring the ratio of the amount of 40
Ar
accumulated to the amount of 40
K
remaining. The long half-life of 40
K
allows the method to be used to calculate the absolute age of samples older than a few thousand years.

<span class="mw-page-title-main">Isochron dating</span> Technique of radiometric dating

Isochron dating is a common technique of radiometric dating and is applied to date certain events, such as crystallization, metamorphism, shock events, and differentiation of precursor melts, in the history of rocks. Isochron dating can be further separated into mineral isochron dating and whole rock isochron dating; both techniques are applied frequently to date terrestrial and also extraterrestrial rocks (meteorites). The advantage of isochron dating as compared to simple radiometric dating techniques is that no assumptions are needed about the initial amount of the daughter nuclide in the radioactive decay sequence. Indeed, the initial amount of the daughter product can be determined using isochron dating. This technique can be applied if the daughter element has at least one stable isotope other than the daughter isotope into which the parent nuclide decays.

Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.

Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routine precisions in the 0.1–1 percent range.

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).

Rubidium (37Rb) has 36 isotopes, with naturally occurring rubidium being composed of just two isotopes; 85Rb (72.2%) and the radioactive 87Rb (27.8%). Normal mixes of rubidium are radioactive enough to fog photographic film in approximately 30 to 60 days.

Samarium–neodymium dating is a radiometric dating method useful for determining the ages of rocks and meteorites, based on the alpha decay of the long-lived samarium isotope to the stable radiogenic neodymium isotope. Neodymium isotope ratios together with samarium-neodymium ratios are used to provide information on age information and the source of igneous melts. It is sometimes assumed that at the moment when crustal material is formed from the mantle the neodymium isotope ratio depends only on the time when this event occurred, but thereafter it evolves in a way that depends on the new ratio of samarium to neodymium in the crustal material, which will be different from the ratio in the mantle material. Samarium–neodymium dating allows us to determine when the crustal material was formed.

The environmental isotopes are a subset of isotopes, both stable and radioactive, which are the object of isotope geochemistry. They are primarily used as tracers to see how things move around within the ocean-atmosphere system, within terrestrial biomes, within the Earth's surface, and between these broad domains.

<span class="mw-page-title-main">Monzogranite</span>

Monzogranites are biotite granite rocks that are considered to be the final fractionation product of magma. Monzogranites are characteristically felsic (SiO2 > 73%, and FeO + MgO + TiO2 < 2.4), weakly peraluminous (Al2O3/ (CaO + Na2O + K2O) = 0.98–1.11), and contain ilmenite, sphene, apatite and zircon as accessory minerals. Although the compositional range of the monzogranites is small, it defines a differentiation trend that is essentially controlled by biotite and plagioclase fractionation. (Fagiono, 2002). Monzogranites can be divided into two groups (magnesio-potassic monzogranite and ferro-potassic monzogranite) and are further categorized into rock types based on their macroscopic characteristics, melt characteristics, specific features, available isotopic data, and the locality in which they are found.

Lead–lead dating is a method for dating geological samples, normally based on 'whole-rock' samples of material such as granite. For most dating requirements it has been superseded by uranium–lead dating, but in certain specialized situations it is more important than U–Pb dating.

Rhenium–osmium dating is a form of radiometric dating based on the beta decay of the isotope 187Re to 187Os. This normally occurs with a half-life of 41.6 × 109 y, but studies using fully ionised 187Re atoms have found that this can decrease to only 33 y. Both rhenium and osmium are strongly siderophilic (iron loving), while Re is also chalcophilic (sulfur loving) making it useful in dating sulfide ores such as gold and Cu-Ni deposits.

Igneous petrology is the study of igneous rocks—those that are formed from magma. As a branch of geology, igneous petrology is closely related to volcanology, tectonophysics, and petrology in general. The modern study of igneous rocks utilizes a number of techniques, some of them developed in the fields of chemistry, physics, or other earth sciences. Petrography, crystallography, and isotopic studies are common methods used in igneous petrology.

Samarium-147 (147Sm or Sm-147) is an isotope of samarium, making up 15% of natural samarium. It is an extremely long-lived radioisotope, with a half-life of 1.06×1011 years, although this can range from 1.05×1011 to 1.17×1011 years. It is mainly used in radiometric dating.

<span class="mw-page-title-main">Ocean island basalt</span>

Ocean island basalt (OIB) is a volcanic rock, usually basaltic in composition, erupted in oceans away from tectonic plate boundaries. Although ocean island basaltic magma is mainly erupted as basalt lava, the basaltic magma is sometimes modified by igneous differentiation to produce a range of other volcanic rock types, for example, rhyolite in Iceland, and phonolite and trachyte at the intraplate volcano Fernando de Noronha. Unlike mid-ocean ridge basalts (MORBs), which erupt at spreading centers (divergent plate boundaries), and volcanic arc lavas, which erupt at subduction zones (convergent plate boundaries), ocean island basalts are the result of intraplate volcanism. However, some ocean island basalt locations coincide with plate boundaries like Iceland, which sits on top of a mid-ocean ridge, and Samoa, which is located near a subduction zone.

Potassium–calcium dating, abbreviated K–Ca dating, is a radiometric dating method used in geochronology. It is based upon measuring the ratio of a parent isotope of potassium to a daughter isotope of calcium. This form of radioactive decay is accomplished through beta decay.

<span class="mw-page-title-main">Lutetium–hafnium dating</span> Gochronological dating method utilizing the radioactive decay system of lutetium–176

Lutetium–hafnium dating is a geochronological dating method utilizing the radioactive decay system of lutetium–176 to hafnium–176. With a commonly accepted half-life of 37.1 billion years, the long-living Lu–Hf decay pair survives through geological time scales, thus is useful in geological studies. Due to chemical properties of the two elements, namely their valences and ionic radii, Lu is usually found in trace amount in rare-earth element loving minerals, such as garnet and phosphates, while Hf is usually found in trace amount in zirconium-rich minerals, such as zircon, baddeleyite and zirkelite.

I-type granites are a category of granites originating from igneous sources, first proposed by Chappell and White (1974). They are recognized by a specific set of mineralogical, geochemical, textural, and isotopic characteristics that indicate, for example, magma hybridization in the deep crust. I-type granites are saturated in silica but undersaturated in aluminum; petrographic features are representative of the chemical composition of the initial magma. In contrast S-type granites are derived from partial melting of supracrustal or "sedimentary" source rocks.

References

  1. Hawkesworth, C. J.; Vollmer, R. (1979). "Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics". Contributions to Mineralogy and Petrology. 69 (2): 151–165. Bibcode:1979CoMP...69..151H. doi:10.1007/BF00371858. S2CID   128876101.
  2. Moller, A.; Mezger, K.; Schenk, V. (1 April 1998). "Crustal Age Domains and the Evolution of the Continental Crust in the Mozambique Belt of Tanzania: Combined Sm-Nd, Rb-Sr, and Pb-Pb Isotopic Evidence". Journal of Petrology. 39 (4): 749–783. doi: 10.1093/petroj/39.4.749 .
  3. McCulloch, M. T.; Wasserburg, G. J. (2 June 1978). "Sm-Nd and Rb-Sr Chronology of Continental Crust Formation: Times of addition to continents of chemically fractionated mantle-derived materials are determined". Science. 200 (4345): 1003–1011. doi:10.1126/science.200.4345.1003. PMID   17740673. S2CID   40675318.
  4. Bowen, Robert (1994), Bowen, Robert (ed.), "Rubidium-Strontium Dating", Isotopes in the Earth Sciences, Springer Netherlands, pp. 162–200, doi:10.1007/978-94-009-2611-0_4, ISBN   978-94-009-2611-0