S-I

Last updated
S-I
S-I rocket stage.jpg
S-I diagram
ManufacturerChrysler
Country of originUnited States
Used on Saturn I
General characteristics
Height24.5 m (80.3 feet)
Diameter6.5 m (21.4 feet)
Gross mass432,681 kg (953,898 lb)
Propellant mass397,414 kg (854,101 lb)
Empty mass45,267 kg (99,796 lb)
Associated stages
FamilySaturn
Launch history
StatusRetired
Total launches10
Successes
(stage only)
10
First flightOctober 27, 1961
Last flightJuly 30, 1965
S-I engine details
Powered by8 H-1 engines
Maximum thrust(vac) 7,582.1 KN (1,704,524 lbf)
Specific impulse 289 sec
PropellantRP-1 / LOX

The S-I was the first stage of the Saturn I rocket used by NASA for the Apollo program. [1]

Contents

Design

The S-I stage was powered by eight H-1 rocket engines [2] burning RP-1 fuel with liquid oxygen (LOX) as oxidizer. The design of the S-I was based on Jupiter and Redstone tanks to leverage existing chains. A central Jupiter tank [3] was surrounded by a cluster of eight Redstone tanks. Four of these Redstone tanks contained LOX and four contained RP-1. The outer tanks were painted to alter thermal conditions inside the tanks and to provide a "roll pattern" used to estimate radial motion during flight. [4] The engines were arranged in two clusters, a group of four fixed central engines and a group of four outer gimbaled engines. The gimbals allowed the stage to be controlled with thrust vectoring. On launches after SA-5, eight fins were added to enhance control during atmospheric flight.

History

The S-I stage was developed by Chrysler and consisted of 9 tanks that were previously used on existing rockets. The central tank was a Jupiter tank that held liquid oxygen. This Jupiter tank was sounded by eight Redstone tanks, four for liquid oxygen and four for RP-1. The first four launches had no fins on the S-I, but the remaining six added them to improve stability during atmospheric flight. [5] The initial launch of the Saturn I consisted of an active S-I, an inactive S-IV and inactive S-V stage. Tensions were high as a launch vehicle of this size had never flown before. The S-I was partially loaded with propellant to lessen the destruction if an anomaly occurred near or on the pad. [6] In the end, the launch was successful and the subsequent SA-5 launch was identified by John F. Kennedy as the launch that put the U.S. above the USSR in terms of lift capability. [7]

Flight history

Mission serial numberLaunch date

(UTC)

Launch notes
SA-1October 27, 1961

15:06:04

First test flight. Block I. Suborbital. Range: 398 km. Apogee: 136.5 km. Apogee Mass: 115,700 lb (52,500 kg). Dummy S-IV and S-V stages.
SA-2April 25, 1962

14:00:34

Second test flight. Block I. Suborbital. 86,000 kg water released at apogee of 145 km as part of Project Highwater. Dummy S-IV and S-V stages.
SA-3November 16, 1962

17:45:02

Third test flight. Block I. Suborbital. 86,000 kg water released at apogee of 167 km. Dummy S-IV and S-V stages. Second and last Project Highwater flight.
SA-4March 28, 1963

20:11:55

Fourth test flight. Block I. Suborbital. Dummy S-IV second stage and S-V third stage. Apogee: 129 km. Range: 400 km.
SA-5January 29, 1964

16:25:01

First live S-IV second stage. First Block II. First to orbit: 760 x 264 km. Mass: 38,700 lb (17,550 kg). Decayed 30 April 1966.
SA-6May 28, 1964

17:07:00

First Apollo boilerplate CSM launch. Block II. Orbit: 204 x 179 km. Mass: 38,900 lb (17,650 kg). Apollo BP-13 decayed 1 June 1964.
SA-7September 18, 1964

16:22:43

Second Apollo boilerplate CSM launch. Block II. Orbit: 203 x 178 km. Mass: 36,800 lb (16,700 kg). Apollo BP-15 decayed 22 September 1964.
SA-9February 16, 1965

14:37:03

Third Apollo boilerplate CSM. First Pegasus micrometeoroid satellite. Orbit: 523 x 430 km. Mass: 3,200 lb (1,450 kg). Pegasus 1 decayed 17 September 1978. Apollo BP-26 decayed 10 July 1985.
SA-8May 25, 1965

07:35:01

Fourth Apollo boilerplate CSM. Only night launch. Second Pegasus micrometeoroid satellite. Orbit: 594 x 467 km. Mass: 3,200 lb (1,450 kg). Pegasus 2 decayed 3 November 1979. Apollo BP-16 decayed 8 July 1989.
SA-10July 30, 1965

13:00:00

Third Pegasus micrometeoroid satellite. Orbit: 567 x 535 km. Mass: 3,200 lb (1,450 kg). Pegasus 3 decayed 4 August 1969. Apollo BP-9A decayed 22 November 1975.

Related Research Articles

<span class="mw-page-title-main">Jupiter-C</span> Part of the Redstone rocket family

The Jupiter-C was an American research and development vehicle developed from the Jupiter-A. Jupiter-C was used for three uncrewed sub-orbital spaceflights in 1956 and 1957 to test re-entry nosecones that were later to be deployed on the more advanced PGM-19 Jupiter mobile missile. The recovered nosecone was displayed in the Oval Office as part of President Dwight D. Eisenhower's televised speech on November 7, 1957.

<span class="mw-page-title-main">RP-1</span> Highly refined form of kerosene used as rocket fuel

RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (H2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than H2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

<span class="mw-page-title-main">Saturn I SA-1</span> 1961 mission in NASAs Apollo spaceflight program

Saturn-Apollo 1 (SA-1) was the first flight of the Saturn I space launch vehicle, the first in the Saturn family, and first mission of the American Apollo program. The rocket was launched on October 27, 1961, from Cape Canaveral, Florida.

<span class="mw-page-title-main">Saturn (rocket family)</span> Family of American heavy-lift rocket launch vehicles

The Saturn family of American rockets was developed by a team of former German rocket engineers and scientists led by Wernher von Braun to launch heavy payloads to Earth orbit and beyond. The Saturn family used liquid hydrogen as fuel in the upper stages. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for the Apollo Moon program. Three versions were built and flown: the medium-lift Saturn I, the heavy-lift Saturn IB, and the super heavy-lift Saturn V.

<span class="mw-page-title-main">Saturn I SA-5</span> Apollo program test launch

Saturn-Apollo 5 (SA-5) was the first launch of the Block II Saturn I rocket and was part of the Apollo program. In 1963, President Kennedy identified this launch as the one which would place US lift capability ahead of the Soviets, after being behind for more than six years since Sputnik.

<span class="mw-page-title-main">AS-101</span> 1964 Apollo Program test flight

AS-101 was the sixth flight of the Saturn I launch vehicle, which carried the first boilerplate Apollo spacecraft into low Earth orbit. The test took place on May 28, 1964, lasting for four orbits. The spacecraft and its upper stage completed a total of 54 orbits before reentering the atmosphere and crashing in the Pacific Ocean on June 1, 1964.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

<span class="mw-page-title-main">S-IC</span> First stage of the Saturn V rocket

The S-IC was the first stage of the American Saturn V rocket. The S-IC stage was manufactured by the Boeing Company. Like the first stages of most rockets, most of its mass of more than 2,000 t (4,400,000 lb) at launch was propellant, in this case RP-1 rocket fuel and liquid oxygen (LOX) oxidizer. It was 42 m (138 ft) tall and 10 m (33 ft) in diameter. The stage provided 34,500 kN (7,750,000 lbf) of thrust at sea level to get the rocket through the first 61 km (38 mi) of ascent. The stage had five F-1 engines in a quincunx arrangement. The center engine was fixed in position, while the four outer engines could be hydraulically gimballed to control the rocket.

<span class="mw-page-title-main">S-II</span> Second stage of the Saturn V, built by North American Aviation

The S-II was the second stage of the Saturn V rocket. It was built by North American Aviation. Using liquid hydrogen (LH2) and liquid oxygen (LOX) it had five J-2 engines in a quincunx pattern. The second stage accelerated the Saturn V through the upper atmosphere with 1,000,000 pounds-force (4.4 MN) of thrust.

The Saturn I was a rocket designed as the United States' first medium lift launch vehicle for up to 20,000-pound (9,100 kg) low Earth orbit payloads. The rocket's first stage was built as a cluster of propellant tanks engineered from older rocket tank designs, leading critics to jokingly refer to it as "Cluster's Last Stand". Its development was taken over from the Advanced Research Projects Agency in 1958 by the newly formed civilian NASA. Its design proved sound and flexible. It was successful in initiating the development of liquid hydrogen-fueled rocket propulsion, launching the Pegasus satellites, and flight verification of the Apollo command and service module launch phase aerodynamics. Ten Saturn I rockets were flown before it was replaced by the heavy lift derivative Saturn IB, which used a larger, higher total impulse second stage and an improved guidance and control system. It also led the way to development of the super-heavy lift Saturn V which carried the first men to landings on the Moon in the Apollo program.

<span class="mw-page-title-main">S-IV</span> Upper stage for NASAs Saturn I rocket

The S-IV was the second stage of the Saturn I rocket used by NASA for early flights in the Apollo program.

<span class="mw-page-title-main">PGM-19 Jupiter</span> Medium-range ballistic missile (MRBM)

The PGM-19 Jupiter was the first nuclear armed, medium-range ballistic missile (MRBM) of the United States Air Force (USAF). It was a liquid-propellant rocket using RP-1 fuel and LOX oxidizer, with a single Rocketdyne LR79-NA rocket engine producing 667 kilonewtons (150,000 lbf) of thrust. It was armed with the 1.44 megatons of TNT (6.0 PJ) W49 nuclear warhead. The prime contractor was the Chrysler Corporation.

<span class="mw-page-title-main">Rocketdyne H-1</span> American kerolox rocket engine

The Rocketdyne H-1 was a 205,000 lbf (910 kN) thrust liquid-propellant rocket engine burning LOX and RP-1. The H-1 was developed for use in the S-I and S-IB first stages of the Saturn I and Saturn IB rockets, respectively, where it was used in clusters of eight engines. After the Apollo program, surplus H-1 engines were rebranded and reworked as the Rocketdyne RS-27 engine with first usage on the Delta 2000 series in 1974. RS-27 engines continued to be used up until 1992 when the first version of the Delta II, Delta 6000, was retired. The RS-27A variant, boasting slightly upgraded performance, was also used on the later Delta II and Delta III rockets, with the former flying until 2018.

The Saturn Vehicle Evaluation Committee, better known as the Silverstein Committee, was a US government commission assembled in 1959 to recommend specific directions that NASA could take with the Saturn rocket program. The committee was chaired by Abe Silverstein, a long-time NASA engineer, with the express intent of selecting upper stages for the Saturn after a disagreement broke out between the Air Force and Army over its development. During the meetings the Committee members outlined a number of different potential designs, including the low-risk solution von Braun was developing with existing ICBM airframes, as well as versions using entirely new upper stages developed to take full advantage of the booster stage. The advantages of using new uppers were so great that the committee won over an initially skeptical von Braun, and the future of the Saturn program changed forever.

<span class="mw-page-title-main">S-IB</span>

The S-IB stage was the first stage of the Saturn IB launch vehicle, which was used for Earth orbital missions. It was an upgraded version of the S-I stage used on the earlier Saturn I rocket and was composed of nine propellant containers, eight fins, a thrust structure assembly, eight H-1 rocket engines, and many other components. It also contained the ODOP transponder. The propellant containers consisted of eight Redstone-derived tanks clustered around a Jupiter rocket-derived tank containing LOX. The four outboard engines gimballed to steer the rocket in flight, which required a few more engine components. The S-IB burned for nearly 2.5 minutes before separating at an altitude of 42 miles (68 km).

<span class="mw-page-title-main">Modular rocket</span> Rocket with interchangeable components

A modular rocket is a kind of multistage rocket which has components that can interchanged for different missions. Several such rockets use similar concepts such as unified modules to minimize expenses on manufacturing, transportation and for optimization of support infrastructure for flight preparations.

<span class="mw-page-title-main">Milton Rosen</span>

Milton William Rosen was a United States Navy engineer and project manager in the US space program between the end of World War II and the early days of the Apollo Program. He led development of the Viking and Vanguard rockets, and was influential in the critical decisions early in NASA's history that led to the definition of the Saturn rockets, which were central to the eventual success of the American Moon landing program. He died of prostate cancer in 2014.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered with liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

The Mercury-Redstone Launch Vehicle, designed for NASA's Project Mercury, was the first American crewed space booster. It was used for six sub-orbital Mercury flights from 1960–1961; culminating with the launch of the first, and 11 weeks later, the second American in space. The four subsequent Mercury human spaceflights used the more powerful Atlas booster to enter low Earth orbit.

References

  1. "S-I stage". Archived from the original on December 28, 2016.
  2. "Saturn family".
  3. "Saturn Illustrated Chronology – Part 1".
  4. "Saturn Illustrated Chronology - Part 2".
  5. "Saturn I & IB Rockets".
  6. "Saturn I". Archived from the original on August 20, 2016.
  7. "President John F. Kennedy's Remarks at Brooks Air Force Base, San Antonio, TX – November 21, 1963".