S1W reactor

Last updated

The S1W reactor was the first prototype naval reactor used by the United States Navy to prove that the technology could be used for electricity generation and propulsion on submarines.

Contents

The designation of "S1W" stands for

and is a later Navy designation. During the plant's early years the project name was "Submarine Thermal Reactor" (STR)

The land-based nuclear reactor was built at the National Reactor Testing Station, later called Idaho National Engineering Laboratory near Arco, Idaho. [1] The plant was the prototype for the power system of USS Nautilus (SSN-571), the world's first nuclear-powered submarine, which used the improved S2W reactor. The specific location within the vast Idaho National Laboratory where the S1W prototype was located was the Naval Reactors Facility.

Design

Nautilus's reactor core prototype at the S1W facility in Idaho Nautilus core.jpg
Nautilus's reactor core prototype at the S1W facility in Idaho

Under the leadership of Captain (later Admiral) Hyman G. Rickover, Naval Reactors followed a concurrent design strategy, with the design and construction of the S1W reactor taking place ahead of the design and construction of the Nautilus. This enabled problems to be identified and resolved before they appeared in the shipboard plant. To better support this design process, the S1W power plant was built inside of a submarine hull. While the cramped spaces prevented engineers from obtaining information on some plant components, it provided a much more realistic example of how the shipboard plant would have to be constructed.

Operation

The S1W was a pressurized water reactor that utilized water as the coolant and neutron moderator in its primary system, and enriched Uranium-235 in its fuel elements. The S1W reactor reached criticality on March 30, 1953. In May of that year, it began power operations, performing a 100-hour run that simulated a submerged voyage from the east coast of the United States to Ireland. [2] This test run clearly demonstrated the revolutionary impact that nuclear propulsion would have upon the submarine, which prior to that time was greatly limited in its ability to conduct continuous underwater operations by battery life and by the oxygen requirement of diesel propulsion systems.

The heated, pressurized water of the S1W reactor power plant was circulated through heat exchangers in order to generate high pressure saturated steam in a separate water loop. This saturated steam powered steam turbines for propulsion and generation of electricity. These facilities were constructed inside an elevated hull simulating the engineering portion of the Nautilus hull. A single propeller was simulated through use of a water brake. Large, exterior water spray ponds were used to dissipate the heat energy created in the facility into the air.

Following the commissioning of the USS Nautilus, the S1W plant was operated to support plant testing and training of operators. Trainees were graduates of the Naval Nuclear Power School in Bainbridge, MD, Mare Island, CA or Orlando, FL (all locations now closed). The course of study lasted six months and consisted of a combination of classroom and closely supervised practical training.

In the mid-1960s, the S1W core was removed. An extension was bolted to the top of the reactor vessel so that a larger S5W reactor core could be installed. After that time the prototype was called S1W/S5W core 4. The new core was first taken critical in late summer of 1967. In order to use the additional power generated by the S5W reactor, additional facilities were added in order to dump the excess steam when the plant was operated at higher power levels. These steam dumps were constructed in the same building, but outside the mock submarine hull.

The S1W/S5W plant was shut down permanently in 1989 (October 17). [3]

Related Research Articles

The S7G reactor was a prototype naval reactor designed for the United States Navy to provide electricity generation and propulsion on warships. The S7G designation stands for:

<span class="mw-page-title-main">United States naval reactors</span> Classes of nuclear reactors used by the United States Navy

United States naval reactors are nuclear reactors used by the United States Navy aboard certain ships to generate the steam used to produce power for propulsion, electric power, catapulting airplanes in aircraft carriers, and a few minor uses. Such naval nuclear reactors have a complete power plant associated with them. All commissioned U.S. Navy submarines and supercarriers built since 1975 are nuclear powered, with the last conventional carrier, USS Kitty Hawk, being decommissioned in May 2009. The U.S. Navy also had nine nuclear-powered cruisers with such reactors, but they have since been decommissioned also.

The S1G reactor is a naval reactor used by the United States Navy to provide electricity generation and propulsion on warships. The S1G designation stands for:

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Naval Reactors Facility</span> United States Department of Energy nuclear reactor facility

The Naval Reactors Facility (NRF) is located 52 miles (84 km) northwest of Idaho Falls, Idaho. The NRF is a United States Department of Energy-Naval Reactors facility where three nuclear propulsion prototypes A1W, S1W and S5G were located. It is contractor-operated for the government by Fluor Corporation through their subsidiary, Fluor Marine Propulsion, LLC, which also operates Bettis Atomic Power Laboratory and Knolls Atomic Power Laboratory.

The S1C reactor was a prototype naval reactor designed for the United States Navy to provide electricity generation and propulsion on warships. The S1C designation stands for:

USS <i>Nautilus</i> (SSN-571) First nuclear-powered submarine of the US Navy, in service from 1954 to 1980

USS Nautilus (SSN-571) was the world's first operational nuclear-powered submarine and on 3 August 1958 became the first submarine to complete a submerged transit of the North Pole. Her initial commanding officer was Eugene "Dennis" Wilkinson, a widely respected naval officer who set the stage for many of the protocols of today's Nuclear Navy of the US, and who had a storied career during military service and afterwards.

The S3G reactor is a naval reactor used by the United States Navy to provide electricity generation and propulsion on warships. The S3G designation stands for:

<span class="mw-page-title-main">S5G reactor</span>

The S5G reactor was a prototype naval reactor designed for the United States Navy to provide electricity generation and propulsion on submarines. The S5G designation stands for:

The A1W reactor is a prototype nuclear reactor used by the United States Navy to provide electricity generation and propulsion on warships. The A1W designation stands for:

<span class="mw-page-title-main">Nuclear marine propulsion</span> Propulsion system for marine vessels utilizing a nuclear powerplant

Nuclear marine propulsion is propulsion of a ship or submarine with heat provided by a nuclear reactor. The power plant heats water to produce steam for a turbine used to turn the ship's propeller through a gearbox or through an electric generator and motor. Nuclear propulsion is used primarily within naval warships such as nuclear submarines and supercarriers. A small number of experimental civil nuclear ships have been built.

<span class="mw-page-title-main">Idaho National Laboratory</span> Laboratory in Idaho Falls, Idaho, United States

Idaho National Laboratory (INL) is one of the national laboratories of the United States Department of Energy and is managed by the Battelle Energy Alliance. Historically, the lab has been involved with nuclear research, although the laboratory does other research as well. Much of current knowledge about how nuclear reactors behave and misbehave was discovered at what is now Idaho National Laboratory. John Grossenbacher, former INL director, said, "The history of nuclear energy for peaceful application has principally been written in Idaho".

<span class="mw-page-title-main">Naval Reactors</span> U.S. government office

Naval Reactors (NR), which administers the Naval Nuclear Propulsion Program, is an umbrella term for the U.S. government office that has comprehensive responsibility for the safe and reliable operation of the United States Navy's nuclear reactors "from womb to tomb." A single entity, it has authority and reporting responsibilities within both the Naval Sea Systems Command and the National Nuclear Security Administration (NA-30). Moreover, the Director of Naval Reactors also serves as a special assistant to the Chief of Naval Operations for Naval Nuclear Propulsion.

The S5W reactor is a nuclear reactor used by the United States Navy to provide electricity generation and propulsion on warships. The S5W designation stands for:

<span class="mw-page-title-main">Machinist's mate</span> Rating in the U.S. Navy

Machinist's Mate is a rating in the United States Navy's engineering community. It is non-capitalised as machinist's mate when discussing the generic rating rather than as a proper noun when discussing a specific enlisted seaman carrying that rating.

The S2W reactor was a naval reactor built by Westinghouse used by the United States Navy to provide electricity generation and propulsion on warships.

<span class="mw-page-title-main">S3W reactor</span>

The S3W reactor is a naval reactor used by the United States Navy to provide electricity generation and propulsion on warships. The S3W designation stands for:

<span class="mw-page-title-main">Nuclear Power School</span> Technical school operated by the U.S. Navy

Nuclear Power School (NPS) is a technical school operated by the U.S. Navy in Goose Creek, South Carolina as a central part of a program that trains enlisted sailors, officers, KAPL civilians and Bettis civilians for shipboard nuclear power plant operation and maintenance of surface ships and submarines in the U.S. nuclear navy. As of 2020 the United States Navy operates 98 nuclear power plants, including 71 submarines, 11 aircraft carriers, two Moored Training Ships (MTS) and two land-based training plants. NPS is the centerpiece of the training pipeline for U.S. Navy nuclear operators. It follows initial training at Nuclear Field "A" School or a college degree, and culminates with certification as a nuclear operator at one of the Navy's two Nuclear Power Training Units (NPTU).

The United States Navy Nuclear Propulsion community consists of Naval Officers and Enlisted members who are specially trained to run and maintain the nuclear reactors that power the submarines and aircraft carriers of the United States Navy. Operating more than 80 nuclear-powered ships, the United States Navy is currently the largest naval force in the world.

References

  1. "STR (Submarine Thermal Reactor)". Reactors Designed by Argonne National Laboratory. Argonne National Laboratory. Retrieved 2012-05-08.
  2. "What It Felt Like to Test the First Submarine Nuclear Reactor - The Atlantic". The Atlantic . 2024-08-02. Archived from the original on 2024-08-02. Retrieved 2024-08-02.
  3. Bettis Atomic Power Laboratory