S7G reactor

Last updated

The S7G reactor was a prototype naval reactor designed for the United States Navy to provide electricity generation and propulsion on warships. The S7G designation stands for:

Prototype early sample or model built to test a concept or process

A prototype is an early sample, model, or release of a product built to test a concept or process or to act as a thing to be replicated or learned from. It is a term used in a variety of contexts, including semantics, design, electronics, and software programming. A prototype is generally used to evaluate a new design to enhance precision by system analysts and users. Prototyping serves to provide specifications for a real, working system rather than a theoretical one. In some design workflow models, creating a prototype is the step between the formalization and the evaluation of an idea.

United States Navy Naval warfare branch of the United States Armed Forces

The United States Navy (USN) is the naval warfare service branch of the United States Armed Forces and one of the seven uniformed services of the United States. It is the largest and most capable navy in the world, with the highest combined battle fleet tonnage and the world's largest aircraft carrier fleet, with eleven in service, and two new carriers under construction. With 319,421 personnel on active duty and 99,616 in the Ready Reserve, the Navy is the third largest of the service branches. It has 282 deployable combat vessels and more than 3,700 operational aircraft as of March 2018, making it the second largest and second most powerful air force in the world.

Electricity generation process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For electric utilities in the electric power industry, it is the first stage in the delivery of electricity to end users, the other stages being transmission, distribution, energy storage and recovery, using the pumped-storage method.

Submarine Watercraft capable of independent operation underwater

A submarine is a watercraft capable of independent operation underwater. It differs from a submersible, which has more limited underwater capability. The term most commonly refers to a large, crewed vessel. It is also sometimes used historically or colloquially to refer to remotely operated vehicles and robots, as well as medium-sized or smaller vessels, such as the midget submarine and the wet sub. The noun submarine evolved as a shortened form of submarine boat; by naval tradition, submarines are usually referred to as "boats" rather than as "ships", regardless of their size.

Nuclear reactor core portion of a nuclear reactor containing the nuclear fuel

A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place and the heat is generated. Typically, the fuel will be low-enriched uranium contained in thousands of individual fuel pins. The core also contains structural components, the means to both moderate the neutrons and control the reaction, and the means to transfer the heat from the fuel to where it is required, outside the core.

General Electric American multinational conglomerate corporation

General Electric Company (GE) is an American multinational conglomerate incorporated in New York and headquartered in Boston. As of 2018, the company operates through the following segments: aviation, healthcare, power, renewable energy, digital industry, additive manufacturing, venture capital and finance, lighting, transportation, and oil and gas.

This prototype design was a land-based nuclear reactor that did not use control rods. It was tested in the late 1970s and early 1980s at the Modifications and Additions to a Reactor Facility (MARF) plant located at the Knolls Atomic Power Laboratory's Kesselring Site in Ballston Spa, New York. It consisted of an experimental reactor core installed in a modified S5W reactor plant.

Knolls Atomic Power Laboratory (KAPL) is an American research and development facility based in Niskayuna, New York and dedicated to the support of the US Naval Nuclear Propulsion Program. Developed after World War II in 1946 under a contract between General Electric and the United States government, in the 21st century KAPL is a government-owned, contractor-operated laboratory run by Fluor Marine Propulsion Corporation for the US Department of Energy. KAPL is responsible for the research, design, construction, operation, and maintenance of U.S. nuclear-powered warships. It also manages work on nuclear ships at numerous shipyards across the country.

Ballston Spa, New York Village in New York, United States

Ballston Spa is a village and the county seat of Saratoga County, New York, United States, located southwest of Saratoga Springs. The population of the village, named after Rev. Eliphalet Ball, a Congregationalist clergyman and an early settler, was 5,556 at the 2000 census. Ballston Spa lies on the border of two towns, situated partly in the Town of Ballston and partly in the Town of Milton.

The S5W reactor is a nuclear reactor used by the United States Navy to provide electricity generation and propulsion on warships. The S5W designation stands for:

Design and operation

Instead of the movable hafnium-based control rods used in all of the other United States Naval reactors, reactivity in the S7G core was controlled by stationary gadolinium-clad tubes partially filled with water. Water could be pumped from the portion of the tube inside the core up to a reservoir above the core, or allowed to flow back down into the tube. A higher water level in the tube slowed more neutrons in the core, causing more neutron capture by the gadolinium tube cladding rather than by the uranium fuel, thus lowering the power level.

Hafnium Chemical element with atomic number 72

Hafnium is a chemical element with symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1923, by Coster and Hevesy, making it the last stable element to be discovered. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.

Control rod

Control rods are used in nuclear reactors to control the fission rate of uranium and plutonium. They are composed of chemical elements such as boron, silver, indium and cadmium that are capable of absorbing many neutrons without themselves fissioning. Because these elements have different capture cross sections for neutrons of varying energies, the composition of the control rods must be designed for the reactor's neutron spectrum. Boiling water reactors (BWR), pressurized water reactors (PWR) and heavy water reactors (HWR) operate with thermal neutrons, while breeder reactors operate with fast neutrons.

Gadolinium Chemical element with atomic number 64

Gadolinium is a chemical element with symbol Gd and atomic number 64. Gadolinium is a silvery-white, malleable, and ductile rare earth metal. It is found in nature only in oxidized form, and even when separated, it usually has impurities of the other rare earths. Gadolinium was discovered in 1880 by Jean Charles de Marignac, who detected its oxide by using spectroscopy. It is named after the mineral gadolinite, one of the minerals in which gadolinium is found, itself named for the chemist Johan Gadolin. Pure gadolinium was first isolated by the chemist Paul Emile Lecoq de Boisbaudran around 1886.

The system was configured with the pump running continually to keep the water level low; on loss of electrical power, all of the water would flow back into the tube, shutting down the reactor. As with all small pressurized water reactors, the design also had the advantage of negative feedback: an increase in reactor power caused the water to expand, leading to reduced thermalization of neutrons and lowering absorption by the fuel, therefore lowering the power. Thus, changes in the average coolant temperature, notably from the steam demand of engine throttles, naturally maintains reactor power without intervention from a reactor operator.

Pressurized water reactor nuclear power plant with a cooling system that operates under high pressure

Pressurized water reactors (PWRs) constitute the large majority of the world's nuclear power plants and are one of three types of light water reactor (LWR), the other types being boiling water reactors (BWRs) and supercritical water reactors (SCWRs). In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated water then flows to a steam generator where it transfers its thermal energy to a secondary system where steam is generated and flows to turbines which, in turn, spin an electric generator. In contrast to a boiling water reactor, pressure in the primary coolant loop prevents the water from boiling within the reactor. All LWRs use ordinary water as both coolant and neutron moderator.

Negative feedback occurs when some function of the output of a system, process, mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by other disturbances

Negative feedback occurs when some function of the output of a system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by other disturbances.

In physics, thermalization is the process of physical bodies reaching thermal equilibrium through mutual interaction. In general the natural tendency of a system is towards a state of equipartition of energy or uniform temperature, maximising the system's entropy.

The S7G reactor was never used on a ship. In the late 1980s the S7G core was replaced with the experimental DMC (Developmental Materials Core)

Related Research Articles

CANDU reactor

The CANDU, for Canada Deuterium Uranium, is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.

Boiling water reactor type of light water nuclear reactor used for the generation of electrical power

A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR), which is also a type of light water nuclear reactor. The main difference between a BWR and PWR is that in a BWR, the reactor core heats water, which turns to steam and then drives a steam turbine. In a PWR, the reactor core heats water, which does not boil. This hot water then exchanges heat with a lower pressure water system, which turns to steam and drives the turbine. The BWR was developed by the Argonne National Laboratory and General Electric (GE) in the mid-1950s. The main present manufacturer is GE Hitachi Nuclear Energy, which specializes in the design and construction of this type of reactor.

Nuclear meltdown severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the Nuclear Regulatory Commission. However, it has been defined to mean the accidental melting of the core of a nuclear reactor, and is in common usage a reference to the core's either complete or partial collapse.

RBMK

The RBMK is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union.

NRX was a heavy-water-moderated, light-water-cooled, nuclear research reactor at the Canadian Chalk River Laboratories, which came into operation in 1947 at a design power rating of 10 MW (thermal), increasing to 42 MW by 1954. At the time of its construction it was Canada's most expensive science facility and the world's most powerful nuclear research reactor. NRX was remarkable both in terms of its heat output and the number of free neutrons it generated. When a nuclear reactor is operating its nuclear chain reaction generates many free neutrons, and in the late 1940s NRX was the most intense neutron source in the world.

Scram emergency shutdown of a nuclear reactor

A scram or SCRAM is an emergency shutdown of a nuclear reactor. It is a type of kill switch. In commercial reactor operations, this type of shutdown is often referred to as a "SCRAM" at boiling water reactors (BWR), a "reactor trip" at pressurized water reactors (PWR) and EPIS at a CANDU (CANDU). In many cases, a SCRAM is part of the routine shutdown procedure as well.

Light-water reactor type of nuclear reactor uses normal water

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator – furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order the achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

Pool-type reactor

Pool-type reactors, also called swimming pool reactors, are a type of nuclear reactor that has a core immersed in an open pool of usually water. Some sodium-cooled reactors like the BN-600 have sodium pools instead. The rest of this article will assume that water is being used.

Supercritical water reactor

The supercritical water reactor (SCWR) is a concept Generation IV reactor, mostly designed as light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and must not be confused with the concept of criticality of the nuclear reactor.

BN-600 reactor russian reactor type from the BN family; fast breeder, cooled with sodium

The BN-600 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. Designed to generate electrical power of 600 MW in total, the plant dispatches 560 MW to the Middle Urals power grid. It has been in operation since 1980 and represents an evolution on the preceding BN-350 reactor. In 2014, its larger sister reactor, the BN-800 reactor began operation.

MIT Nuclear Research Reactor

The MIT Nuclear Research Reactor (MITR) serves the research purposes of the Massachusetts Institute of Technology. It is a tank-type 6 MW reactor that is moderated and cooled by light water and uses heavy water as a reflector. It is the second largest university based research reactor in the U.S. and has been in operation since 1958. It is the fourth-oldest operating reactor in the country.

The three primary objectives of nuclear reactor safety systems as defined by the U.S. Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition and prevent the release of radioactive material.

Clementine was the code name for the world's first fast-neutron reactor. It was an experimental-scale reactor. The maximum output was 25 kW and was fueled by plutonium and cooled by liquid mercury. Clementine was located at Los Alamos National Laboratory in Los Alamos, New Mexico. Clementine was designed and built in 1945–1946 and first achieved criticality in 1946 and full power in 1949. The reactor was named after the song "Oh My Darling, Clementine." The similarities to the song were that the reactor was located in a deep canyon and the reactor operators were 49'ers, as 49 was one of the code names for plutonium at the time.

Washington State University Reactor

The Washington State University Reactor (WSUR) is housed in the Washington State University Nuclear Radiation Center (WSUNRC), and was completed in 1961. The (then) Washington State College Reactor was the brainchild of Harold W. Dodgen, a former researcher on the Manhattan Project where he earned his PhD from 1943 to 1946. He secured funding for the ambitious 'Reactor Project' from the National Science Foundation, the Atomic Energy Commission, and the College administration totaling $479,000. Dodgen's basis for constructing a reactor was that the College was primly located as a training facility for the Hanford site, as well as Idaho National Laboratory because there was no other research reactor in the West at that time. After completing the extensive application and design process with the help of contractors from General Electric they broke ground in August 1957 and the first criticality was achieved on March 7, 1961 at a power level of 1W. They gradually increased power over the next year to achieve their maximum licensed operating power of 100 kW.

The Energy Multiplier Module is a nuclear fission power reactor under development by General Atomics. It is a fast-neutron version of the Gas Turbine Modular Helium Reactor (GT-MHR) and is capable of converting spent nuclear fuel into electricity and industrial process heat.

References