SELENON

Last updated
SELENON
Identifiers
Aliases SELENON , CFTD, MDRS1, RSMD1, RSS, SELN, SEPN1, selenoprotein N, 1, selenoprotein N
External IDs OMIM: 606210 MGI: 2151208 HomoloGene: 10723 GeneCards: SELENON
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_206926
NM_020451

NM_029100

RefSeq (protein)

NP_065184
NP_996809

NP_083376

Location (UCSC) Chr 1: 25.8 – 25.82 Mb Chr 4: 134.27 – 134.28 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Selenoprotein N is a protein that in humans is encoded by the SEPN1 gene. [5] [6]

Contents

Function

This gene encodes a selenoprotein, which contains a selenocysteine (Sec) residue at its active site. The selenocysteine is encoded by the UGA codon that normally signals translation termination. The 3' UTR of selenoprotein genes have a common stem-loop structure, the sec insertion sequence (SECIS), that is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. Mutations in this gene cause the classical phenotype of multiminicore disease and congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [6]

Related Research Articles

In molecular biology a selenoprotein is any protein that includes a selenocysteine amino acid residue. Among functionally characterized selenoproteins are five glutathione peroxidases (GPX) and three thioredoxin reductases, (TrxR/TXNRD) which both contain only one Sec. Selenoprotein P is the most common selenoprotein found in the plasma. It is unusual because in humans it contains 10 Sec residues, which are split into two domains, a longer N-terminal domain that contains 1 Sec, and a shorter C-terminal domain that contains 9 Sec. The longer N-terminal domain is likely an enzymatic domain, and the shorter C-terminal domain is likely a means of safely transporting the very reactive selenium atom throughout the body.

<span class="mw-page-title-main">Muscle biopsy</span> Procedure in which a piece of muscle tissue is removed from an organism and examined microscopically

In medicine, a muscle biopsy is a procedure in which a piece of muscle tissue is removed from an organism and examined microscopically. A muscle biopsy can lead to the discovery of problems with the nervous system, connective tissue, vascular system, or musculoskeletal system.

Derek Blake was, until 2007, the Isobel Laing Post-Doctoral Fellow in Biomedical Sciences, and the Wellcome Trust Senior Fellow in Basic Biomedical Science, Oriel College, Oxford.

<span class="mw-page-title-main">Centronuclear myopathy</span> Medical condition

Centronuclear myopathies (CNM) are a group of congenital myopathies where cell nuclei are abnormally located in the center of muscle cells instead of their normal location at the periphery.

<span class="mw-page-title-main">Congenital muscular dystrophy</span> Medical condition

Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.

<span class="mw-page-title-main">Distal myopathy</span> Medical condition

Distal myopathy is a group of rare genetic disorders that cause muscle damage and weakness, predominantly in the hands and/or feet. Mutation of many different genes can be causative. Many types involve dysferlin.

<span class="mw-page-title-main">Bethlem myopathy</span> Medical condition

Bethlem myopathy is predominantly an autosomal dominant myopathy, classified as a congenital form of limb-girdle muscular dystrophy. There are two types of Bethlem myopathy, based on which type of collagen is affected.

<span class="mw-page-title-main">Fukutin</span> Mammalian protein found in Homo sapiens

Fukutin is a eukaryotic protein necessary for the maintenance of muscle integrity, cortical histogenesis, and normal ocular development. Mutations in the fukutin gene have been shown to result in Fukuyama congenital muscular dystrophy (FCMD) characterised by brain malformation - one of the most common autosomal-recessive disorders in Japan. In humans this protein is encoded by the FCMD gene, located on chromosome 9q31. Human fukutin exhibits a length of 461 amino acids and a predicted molecular mass of 53.7 kDa.

<span class="mw-page-title-main">Fukutin-related protein</span> Mammalian protein found in Homo sapiens

Fukutin-related protein (FKRP) is also known as FKRP_HUMAN, LGMD2I, MDC1C, MDDGA5, MDDGB5, and MDDGC5. FKRP can be located in the brain, cardiac muscle and skeletal muscle, and in cells it is found in the Golgi apparatus. Fukutin is expressed in the mammalian retina and is located in the Golgi complex of retinal neurons.

<span class="mw-page-title-main">FHL1</span> Mammalian protein found in humans

Four and a half LIM domains protein 1 is a protein that in humans is encoded by the FHL1 gene.

Calpain-3 is a protein that in humans is encoded by the CAPN3 gene.

<span class="mw-page-title-main">Laminin subunit alpha-2</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-2 is a protein that in humans is encoded by the LAMA2 gene.

<span class="mw-page-title-main">Integrin alpha 7</span>

Alpha-7 integrin is a protein that in humans is encoded by the ITGA7 gene. Alpha-7 integrin is critical for modulating cell-matrix interactions. Alpha-7 integrin is highly expressed in cardiac muscle, skeletal muscle and smooth muscle cells, and localizes to Z-disc and costamere structures. Mutations in ITGA7 have been associated with congenital myopathies and noncompaction cardiomyopathy, and altered expression levels of alpha-7 integrin have been identified in various forms of muscular dystrophy.

<span class="mw-page-title-main">Collagen, type VI, alpha 3</span> Mammalian protein found in humans

Collagen alpha-3(VI) chain is a protein that in humans is encoded by the COL6A3 gene. This protein is an alpha chain of type VI collagen that aids in microfibril formation. As part of type VI collagen, this protein has been implicated in Bethlem myopathy, Ullrich congenital muscular dystrophy (UCMD), and other diseases related to muscle and connective tissue.

<span class="mw-page-title-main">SGCA</span> Protein-coding gene in the species Homo sapiens

Alpha-sarcoglycan is a protein that in humans is encoded by the SGCA gene.

<span class="mw-page-title-main">MYOT</span> Mammalian protein found in Homo sapiens

Myotilin is a protein that in humans is encoded by the MYOT gene. Myotilin also known as TTID is a muscle protein that is found within the Z-disc of sarcomeres.

<span class="mw-page-title-main">CHKB (gene)</span> Protein-coding gene in the species Homo sapiens

Choline kinase beta (CK), also known as Ethanolamine kinase (EK), Choline kinase-like protein , choline/ethanolamine kinase beta (CKEKB), or Choline/ethanolamine kinase is a protein encoded by the CHKB gene. This gene is found on chromosome 22 in humans. The encoded protein plays a key role in phospholipid biosynthesis. Choline kinase (CK) and ethanolamine kinase (EK) catalyzes the first step in phosphatidylethanolamine biosynthesis. Read-through transcripts are expressed from this locus that include exons from the downstream CPT1B locus.

<span class="mw-page-title-main">Ullrich congenital muscular dystrophy</span> Medical condition

Ullrich congenital muscular dystrophy (UCMD) is a form of congenital muscular dystrophy. There are two forms: UCMD1 and UCMD2.

Collagen VI (ColVI) is a type of collagen primarily associated with the extracellular matrix of skeletal muscle. ColVI maintains regularity in muscle function and stabilizes the cell membrane. It is synthesized by a complex, multistep pathway that leads to the formation of a unique network of linked microfilaments located in the extracellular matrix (ECM). ColVI plays a vital role in numerous cell types, including chondrocytes, neurons, myocytes, fibroblasts, and cardiomyocytes. ColVI molecules are made up of three alpha chains: α1(VI), α2(VI), and α3(VI). It is encoded by 6 genes: COL6A1, COL6A2, COL6A3, COL6A4, COL6A5, and COL6A6. The chain lengths of α1(VI) and α2(VI) are about 1,000 amino acids. The chain length of α3(VI) is roughly a third larger than those of α1(VI) and α2(VI), and it consists of several spliced variants within the range of 2,500 to 3,100 amino acids.

Michel Fardeau, is a medical researcher in medical pathology, pioneering founder in France of myology, a medical discipline treating diseases of the neuromuscular system. He was also a full professor at the Conservatoire National des Arts et Métiers in a chair dedicated to the social integration of disabled people.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000162430 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000050989 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lescure A, Gautheret D, Carbon P, Krol A (Dec 1999). "Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif". The Journal of Biological Chemistry. 274 (53): 38147–54. doi: 10.1074/jbc.274.53.38147 . PMID   10608886.
  6. 1 2 "Entrez Gene: SEPN1 selenoprotein N, 1".

Further reading