SETX

Last updated
SETX
Identifiers
Aliases SETX , ALS4, AOA2, SCAR1, bA479K20.2, senataxin, Sen1, SCAN2, STEX
External IDs OMIM: 608465 MGI: 2443480 HomoloGene: 41003 GeneCards: SETX
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015046
NM_001351527
NM_001351528

NM_198033
NM_177365

RefSeq (protein)

NP_055861
NP_001338456
NP_001338457

NP_932150

Location (UCSC) Chr 9: 132.26 – 132.35 Mb Chr 2: 29.01 – 29.07 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Probable helicase senataxin is an enzyme that in humans is encoded by the SETX gene. [5] [6] [7]

Contents

This gene encodes a protein named senataxin, a 302kDa protein [8]

Sequence and structure

There is high homology between human SETX and yeast Sen1. Sen1 in yeast is a RNA/DNA helicase and the highly conserved sequences between these genes, particularly in the helicase domain, indicates that SETX in humans may have similar roles in gene expression and maintaining genome stability. In Sen1, the N-terminus has shown interactions with the C-terminal domain of RNA polymerase II, ribonuclease III, and NER factor Rad2/XPG. Meanwhile, the C-terminus encodes the DNA/RNA helicase activity. [9] Similarly, SETX encodes the senataxin protein that has a N-terminal that is likely to be involved with interacting with other proteins. Senataxin interacts with RNA polymerase II and poly(A) binding proteins. At the C-terminal, senataxin has a DEAD box helicase domain. [10]

Function

Although senataxin is widely expressed in many tissues in the body, the cellular roles of senataxin are not completely understood. However, based on current research and examining homologs of SETX, senataxin is thought to play an important role in resolving R-loops, transcription termination, and maintaining genome stability by being an essential component of the DNA-damage response (DDR). [11]

SETX is suspected to be involved in DNA damage repair and maintaining genome stability by working with other proteins in the DNA damage response. R loops may arise from replication stress, such as when transcription and replication occur at the same time at a certain loci. This often occurs when transcribing long genes since transcription of that gene can take longer than one round of replication. When the replisome and transcription machinery collide, R loops can form and double stranded breaks can form. [12] At these collision sites, SETX was shown to co-localize with 53BP1, which is a marker for DNA damage. [13] Furthermore, SETX was observed to promote homologous recombination repair and prevent translocation. [14] To further support SETX's role in DNA damage repair, SETX co-localizes with many other DDR factors. For example, BRCA1 was also shown to recruit SETX to remove R-loops, which prevents DNA mutations that arise as a result of the vulnerable single stranded DNA that is part of the R-loop structure. [15] SETX may be involved in double strand break repair through its involvement in loading RAD51, which is a crucial protein in double strand break repair through homologous recombination. [16]

Furthermore, Senataxin may be involved in transcription termination. A large amount of R-loops are found at the 3’ end of some mammalian genes, after poly-adenylation sites. The R-loops are thought to be involved in transcription termination by stalling RNA polymerase II. The senataxin protein, which has RNA-DNA helicase activity, and DHX9 human helicase can resolve R-loops. This allows XRN2, an exonuclease, to access the 3’ cleavage polyadenylated sites and degrade the 3’ transcript. This ultimately leads to termination of transcription. [17]

Clinical significance

SETX was found to be mutated in juvenile ataxia with oculomotor apraxia type 2 (AOA2) and juvenile form of amyotrophic lateral sclerosis (ALS4). [18] In ALS4 cells, SETX are mutated to have more helicase function, resulting in lower R-loop levels then usual, which causes abnormal TGF-β signaling and causes neuron death. [19] AOA2 cells show senataxin loss of function and abnormally high R-loop levels. [20] Neurological diseases such AOA2 and ALS4 are frequently shown to have abnormal accumulation of protein aggregates and research shows that SETX may have an essential role in autophagy by regulating genes involved in clearing protein aggregates. [21]

Related Research Articles

In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is transcribed. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Some examples of this include producing the mRNA that encode enzymes to adapt to a change in a food source, producing the gene products involved in cell cycle specific activities, and producing the gene products responsible for cellular differentiation in multicellular eukaryotes, as studied in evolutionary developmental biology.

<span class="mw-page-title-main">Helicase</span> Class of enzymes to unpack an organisms genes

Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two hybridized nucleic acid strands, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases.

<span class="mw-page-title-main">Ataxia–telangiectasia</span> Rare, neurodegenerative, autosomal recessive human disease causing severe disability

Ataxia–telangiectasia, also referred to as ataxia–telangiectasia syndrome or Louis–Bar syndrome, is a rare, neurodegenerative, autosomal recessive disease causing severe disability. Ataxia refers to poor coordination and telangiectasia to small dilated blood vessels, both of which are hallmarks of the disease. A–T affects many parts of the body:

<span class="mw-page-title-main">ATM serine/threonine kinase</span>

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, oxidative stress, topoisomerase cleavage complexes, splicing intermediates, R-loops and in some cases by single-strand DNA breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

Transcription factor II H (TFIIH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFIIH first came to light in 1989 when general transcription factor-δ or basic transcription factor 2 was characterized as an indispensable transcription factor in vitro. This factor was also isolated from yeast and finally named TFIIH in 1992.

<span class="mw-page-title-main">Aprataxin</span> Protein-coding gene in the species Homo sapiens

Aprataxin is a protein that in humans is encoded by the APTX gene.

<span class="mw-page-title-main">DDX5</span> Protein-coding gene in Homo sapiens

Probable ATP-dependent RNA helicase DDX5 also known as DEAD box protein 5 or RNA helicase p68 is an enzyme that in humans is encoded by the DDX5 gene.

<span class="mw-page-title-main">TOPBP1</span> Protein-coding gene in the species Homo sapiens

DNA topoisomerase 2-binding protein 1 (TOPBP1) is a scaffold protein that in humans is encoded by the TOPBP1 gene.

<span class="mw-page-title-main">ERCC8 (gene)</span> Protein-coding gene in humans

DNA excision repair protein ERCC-8 is a protein that in humans is encoded by the ERCC8 gene.

<span class="mw-page-title-main">DHX38</span> Protein-coding gene in the species Homo sapiens

Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 is an enzyme that in humans is encoded by the DHX38 gene.

<span class="mw-page-title-main">CHD1</span> Chromatin remodeling protein that is widely conserved across many eukaryotic organisms

The Chromodomain-Helicase DNA-binding 1 is a protein that, in humans, is encoded by the CHD1 gene. CHD1 is a chromatin remodeling protein that is widely conserved across many eukaryotic organisms, from yeast to humans. CHD1 is named for three of its protein domains: two tandem chromodomains, its ATPase catalytic domain, and its DNA-binding domain.

<span class="mw-page-title-main">FOXN3</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein N3 is a protein that in humans is encoded by the FOXN3 gene.

<span class="mw-page-title-main">CHD8</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 8 is an enzyme that in humans is encoded by the CHD8 gene.

<span class="mw-page-title-main">DHX16</span> Protein-coding gene in the species Homo sapiens

Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 is an enzyme that in humans is encoded by the DHX16 gene.

Genome instability refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or aneuploidy. Genome instability does occur in bacteria. In multicellular organisms genome instability is central to carcinogenesis, and in humans it is also a factor in some neurodegenerative diseases such as amyotrophic lateral sclerosis or the neuromuscular disease myotonic dystrophy.

Oculomotor apraxia (OMA) is the absence or defect of controlled, voluntary, and purposeful eye movement. It was first described in 1952 by the American ophthalmologist David Glendenning Cogan. People with this condition have difficulty moving their eyes horizontally and moving them quickly. The main difficulty is in saccade initiation, but there is also impaired cancellation of the vestibulo-ocular reflex. Patients have to turn their head in order to compensate for the lack of eye movement initiation in order to follow an object or see objects in their peripheral vision, but they often exceed their target. There is controversy regarding whether OMA should be considered an apraxia, since apraxia is the inability to perform a learned or skilled motor action to command, and saccade initiation is neither a learned nor a skilled action.

<span class="mw-page-title-main">Protein ZGRF1</span> Protein-coding gene in the species Homo sapiens

Protein ZGRF1 is a protein encoded in the human by the ZGRF1 gene also known as C4orf21, that has a weight of 236.6 kDa. The ZGRF1 gene product localizes to the cell nucleus and promotes DNA repair by stimulating homologous recombination. This gene shows relatively low expression in most human tissues, with increased expression in situations of chemical dependence. ZGRF1 is orthologous to nearly all eukaryotes. Functional domains of this protein link it to a series of helicases, most notably the AAA_12 and AAA_11 domains.

<span class="mw-page-title-main">R-loop</span> Three-stranded nucleic acid structure

An R-loop is a three-stranded nucleic acid structure, composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA. R-loops may be formed in a variety of circumstances and may be tolerated or cleared by cellular components. The term "R-loop" was given to reflect the similarity of these structures to D-loops; the "R" in this case represents the involvement of an RNA moiety.

DRIP-seq (DRIP-sequencing) is a technology for genome-wide profiling of a type of DNA-RNA hybrid called an "R-loop". DRIP-seq utilizes a sequence-independent but structure-specific antibody for DNA-RNA immunoprecipitation (DRIP) to capture R-loops for massively parallel DNA sequencing.

<span class="mw-page-title-main">Nuclear organization</span> Spatial distribution of chromatin within a cell nucleus

Nuclear organization refers to the spatial distribution of chromatin within a cell nucleus. There are many different levels and scales of nuclear organisation. Chromatin is a higher order structure of DNA.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000107290 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000043535 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Chance PF, Rabin BA, Ryan SG, Ding Y, Scavina M, Crain B, et al. (March 1998). "Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34". American Journal of Human Genetics. 62 (3): 633–40. doi:10.1086/301769. PMC   1376963 . PMID   9497266.
  6. Németh AH, Bochukova E, Dunne E, Huson SM, Elston J, Hannan MA, et al. (November 2000). "Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34". American Journal of Human Genetics. 67 (5): 1320–6. doi:10.1016/S0002-9297(07)62962-0. PMC   1288574 . PMID   11022012.
  7. "Entrez Gene: SETX senataxin".
  8. Groh M, Albulescu LO, Cristini A, Gromak N (October 2017). "Senataxin: Genome Guardian at the Interface of Transcription and Neurodegeneration". Journal of Molecular Biology. 429 (21): 3181–3195. doi:10.1016/j.jmb.2016.10.021. PMID   27771483.
  9. Hamperl S, Cimprich KA (July 2014). "The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability". DNA Repair. 19: 84–94. doi:10.1016/j.dnarep.2014.03.023. PMC   4051866 . PMID   24746923.
  10. Skourti-Stathaki K, Proudfoot NJ (July 2014). "A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression". Genes & Development. 28 (13): 1384–96. doi:10.1101/gad.242990.114. PMC   4083084 . PMID   24990962.
  11. Yüce Ö, West SC (January 2013). "Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response". Molecular and Cellular Biology. 33 (2): 406–17. doi:10.1128/MCB.01195-12. PMC   3554130 . PMID   23149945.
  12. Richard P, Manley JL (October 2017). "R Loops and Links to Human Disease". Journal of Molecular Biology. 429 (21): 3168–3180. doi:10.1016/j.jmb.2016.08.031. PMC   5478472 . PMID   27600412.
  13. Hamperl S, Cimprich KA (July 2014). "The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability". DNA Repair. 19: 84–94. doi:10.1016/j.dnarep.2014.03.023. PMC   4051866 . PMID   24746923.
  14. Cohen S, Puget N, Lin YL, Clouaire T, Aguirrebengoa M, Rocher V, et al. (February 2018). "Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations". Nature Communications. 9 (1): 533. Bibcode:2018NatCo...9..533C. doi:10.1038/s41467-018-02894-w. PMC   5803260 . PMID   29416069.
  15. Crossley MP, Bocek M, Cimprich KA (February 2019). "R-Loops as Cellular Regulators and Genomic Threats". Molecular Cell. 73 (3): 398–411. doi:10.1016/j.molcel.2019.01.024. PMC   6402819 . PMID   30735654.
  16. Cohen S, Puget N, Lin YL, Clouaire T, Aguirrebengoa M, Rocher V, et al. (February 2018). "Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations". Nature Communications. 9 (1): 533. Bibcode:2018NatCo...9..533C. doi:10.1038/s41467-018-02894-w. PMC   5803260 . PMID   29416069.
  17. Skourti-Stathaki K, Proudfoot NJ, Gromak N (June 2011). "Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination". Molecular Cell. 42 (6): 794–805. doi:10.1016/j.molcel.2011.04.026. PMC   3145960 . PMID   21700224.
  18. Richard P, Feng S, Tsai YL, Li W, Rinchetti P, Muhith U, et al. (August 2020). "SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation" (PDF). Autophagy. 17 (8): 1889–1906. doi:10.1080/15548627.2020.1796292. PMC   8386630 . PMID   32686621.
  19. Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, et al. (February 2018). "Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters". Molecular Cell. 69 (3): 426–437.e7. doi:10.1016/j.molcel.2017.12.030. PMC   5815878 . PMID   29395064.
  20. Crossley MP, Bocek M, Cimprich KA (February 2019). "R-Loops as Cellular Regulators and Genomic Threats". Molecular Cell. 73 (3): 398–411. doi:10.1016/j.molcel.2019.01.024. PMC   6402819 . PMID   30735654.
  21. Richard P, Rosonina E (October 2021). "Regulating autophagy: a novel role for SETX (Senataxin)". Neural Regeneration Research. 16 (10): 2008–2009. doi: 10.4103/1673-5374.308091 . PMC   8343329 . PMID   33642381.

Further reading