SLC52A3

Last updated
SLC52A3
Identifiers
Aliases SLC52A3 , BVVLS, BVVLS1, C20orf54, RFT2, RFVT3, bA371L19.1, hRFT2, solute carrier family 52 member 3
External IDs OMIM: 613350 MGI: 1916948 HomoloGene: 12324 GeneCards: SLC52A3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_033409
NM_001370085
NM_001370086

NM_001164819
NM_001164820
NM_027172

RefSeq (protein)

NP_212134
NP_001357014
NP_001357015

NP_001158291
NP_001158292
NP_081448

Location (UCSC) Chr 20: 0.76 – 0.78 Mb Chr 2: 151.84 – 151.85 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Solute carrier family 52 (riboflavin transporter), member 3, formerly known as chromosome 20 open reading frame 54 and riboflavin transporter 2, is a protein that in humans is encoded by the SLC52A3 gene. [5] [6]

Contents

Function

This locus likely encodes a transmembrane protein that may function as a riboflavin transporter. [5] [6]

Clinical significance

Mutations at this locus have been associated with Fazio–Londe disease and Brown-Vialetto-Van Laere syndrome. [7] [8]

Model organisms

Model organisms have been used in the study of C20orf54 function. The orthologous gene in mice is called 2310046K01Rik. A conditional knockout mouse line, called 2310046K01Riktm2a(KOMP)Wtsi [15] [16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [17] [18] [19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [13] [20] Twenty five tests were carried out on mutant mice and three significant abnormalities were observed. [13] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and males had an increased mean corpuscular haemoglobin concentration. [13]

Related Research Articles

<span class="mw-page-title-main">Genome project</span>

Genome projects are scientific endeavours that ultimately aim to determine the complete genome sequence of an organism and to annotate protein-coding genes and other important genome-encoded features. The genome sequence of an organism includes the collective DNA sequences of each chromosome in the organism. For a bacterium containing a single chromosome, a genome project will aim to map the sequence of that chromosome. For the human species, whose genome includes 22 pairs of autosomes and 2 sex chromosomes, a complete genome sequence will involve 46 separate chromosome sequences.

<span class="mw-page-title-main">RBBP7</span> Protein-coding gene in the species Homo sapiens

Histone-binding protein RBBP7 is a protein that in humans is encoded by the RBBP7 gene.

<span class="mw-page-title-main">Sirtuin 2</span> Protein-coding gene in the species Homo sapiens

NAD-dependent deacetylase sirtuin 2 is an enzyme that in humans is encoded by the SIRT2 gene. SIRT2 is an NAD+ -dependent deacetylase. Studies of this protein have often been divergent, highlighting the dependence of pleiotropic effects of SIRT2 on cellular context. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. Similar to other sirtuin family members, SIRT2 displays a ubiquitous distribution. SIRT2 is expressed in a wide range of tissues and organs and has been detected particularly in metabolically relevant tissues, including the brain, muscle, liver, testes, pancreas, kidney, and adipose tissue of mice. Of note, SIRT2 expression is much higher in the brain than all other organs studied, particularly in the cortex, striatum, hippocampus, and spinal cord.

<span class="mw-page-title-main">SETDB1</span> Enzyme-coding gene in humans

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene. SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.

<span class="mw-page-title-main">CENPJ</span> Centromere- and microtubule-associated protein

Centromere protein J is a protein that in humans is encoded by the CENPJ gene. It is also known as centrosomal P4.1-associated protein (CPAP). During cell division, this protein plays a structural role in the maintenance of centrosome integrity and normal spindle morphology, and it is involved in microtubule disassembly at the centrosome. This protein can function as a transcriptional coactivator in the Stat5 signaling pathway and also as a coactivator of NF-kappaB-mediated transcription, likely via its interaction with the coactivator p300/CREB-binding protein.

<span class="mw-page-title-main">STX8</span> Protein-coding gene in the species Homo sapiens

Syntaxin-8 is a protein that in humans is encoded by the STX8 gene. Syntaxin 8 directly interacts with HECTd3 and has similar subcellular localization. The protein has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These function as the machinery for the homotypic fusion of late endosomes.

<span class="mw-page-title-main">Monocarboxylate transporter 8</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 8 (MCT8) is an active transporter protein that in humans is encoded by the SLC16A2 gene.

<span class="mw-page-title-main">UBAP1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-associated protein 1 is a protein that in humans is encoded by the UBAP1 gene.

<span class="mw-page-title-main">ARID2</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.

<span class="mw-page-title-main">Shugoshin 1</span> Protein-coding gene in the species Homo sapiens

Shugoshin 1 or Shugoshin-like 1, is a protein that in humans is encoded by the SGO1 gene.

<span class="mw-page-title-main">Kaptin (actin binding protein)</span> Protein-coding gene in the species Homo sapiens

Kaptin is a protein that in humans is encoded by the KPTN gene.

<span class="mw-page-title-main">KDM4C</span> Protein-coding gene in the species Homo sapiens

Lysine-specific demethylase 4C is an enzyme that in humans is encoded by the KDM4C gene.

<span class="mw-page-title-main">NCAPH</span> Protein-coding gene in the species Homo sapiens

Condensin complex subunit 2 also known as chromosome-associated protein H (CAP-H) or non-SMC condensin I complex subunit H (NCAPH) is a protein that in humans is encoded by the NCAPH gene. CAP-H is a subunit of condensin I, a large protein complex involved in chromosome condensation. Abnormal expression of NCAPH may be linked to various types of carcinogenesis as a prognostic indicator.

<span class="mw-page-title-main">TRAF3IP3</span> Protein-coding gene in the species Homo sapiens

TRAF3-interacting JNK-activating modulator is a protein that in humans is encoded by the TRAF3IP3 gene.

<span class="mw-page-title-main">SEC16B</span> Protein-coding gene in the species Homo sapiens

Protein transport protein Sec16B also known as regucalcin gene promoter region-related protein p117 (RGPR-p117) and leucine zipper transcription regulator 2 (LZTR2) is a protein that in humans is encoded by the SEC16B gene.

<span class="mw-page-title-main">CRLF3</span> Protein-coding gene in the species Homo sapiens

Cytokine receptor-like factor 3 is a protein that in humans is encoded by the CRLF3 gene.

<span class="mw-page-title-main">OSBPL9</span> Protein-coding gene in the species Homo sapiens

Oxysterol binding protein-like 9 is a protein that in humans is encoded by the OSBPL9 gene.

<span class="mw-page-title-main">TRIM45</span> Protein-coding gene in the species Homo sapiens

tripartite motif containing 45, also known as TRIM45, is a human gene.

<span class="mw-page-title-main">TMEM165</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 165 is a protein that in humans is encoded by the TMEM165 gene.

Kang Zhang is a Chinese-American ophthalmologist specializing in ophthalmic genetics and aging processes in the eye. He is currently a Professor of the Faculty of Medicine at Macau University of Science and Technology. He was previously a Professor of Ophthalmology and the Founding Director of the Institute for Genomic Medicine at the University of California, San Diego. Zhang is particularly known for his work on lanosterol, stem cell research, gene editing, and artificial intelligence.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000101276 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027463 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: chromosome 20 open reading frame 54".
  6. 1 2 Yamamoto S, Inoue K, Ohta KY, Fukatsu R, Maeda JY, Yoshida Y, Yuasa H (April 2009). "Identification and functional characterization of rat riboflavin transporter 2". J. Biochem. 145 (4): 437–43. doi:10.1093/jb/mvn181. PMID   19122205.
  7. Green P, Wiseman M, Crow YJ, Houlden H, Riphagen S, Lin JP, Raymond FL, Childs AM, Sheridan E, Edwards S, Josifova DJ (March 2010). "Brown-Vialetto-Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in c20orf54". Am. J. Hum. Genet. 86 (3): 485–9. doi:10.1016/j.ajhg.2010.02.006. PMC   2833371 . PMID   20206331.
  8. Johnson JO, Gibbs JR, Van Maldergem L, Houlden H, Singleton AB (October 2010). "Exome sequencing in Brown-Vialetto-van Laere syndrome". Am. J. Hum. Genet. 87 (4): 567–9, author reply 569–70. doi:10.1016/j.ajhg.2010.05.021. PMC   2948797 . PMID   20920669.
  9. "Dysmorphology data for 2310046K01Rik". Wellcome Trust Sanger Institute.
  10. "Haematology data for 2310046K01Rik". Wellcome Trust Sanger Institute.
  11. "Salmonella infection data for 2310046K01Rik". Wellcome Trust Sanger Institute.
  12. "Citrobacter infection data for 2310046K01Rik". Wellcome Trust Sanger Institute.
  13. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  18. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  19. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.

Further reading