SPPL2A

Last updated
SPPL2A
Identifiers
Aliases SPPL2A , IMP3, PSL2, signal peptide peptidase like 2A, IMD86
External IDs OMIM: 608238 MGI: 1913802 HomoloGene: 36411 GeneCards: SPPL2A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_032802

NM_023220

RefSeq (protein)

NP_116191

NP_075709

Location (UCSC) Chr 15: 50.7 – 50.77 Mb Chr 2: 126.89 – 126.93 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Signal peptide peptidase-like 2A, also known as SPPL2A, is a human gene. [5]

Contents

Function

This gene is a member of the signal peptide peptidase-like protease (SPPL) family and encodes a lysosomal/late endosomal membrane protein [6] with the conserved active site motifs 'YD' and 'GxGD' in adjacent transmembrane domains (TMDs). This protein plays a role in innate and adaptive immunity by cleaving TNFα in activated dendritic cells. [7] [8] A pseudogene of this gene also lies on chromosome 15. [5]

Related Research Articles

In molecular biology, the Signal Peptide Peptidase (SPP) is a type of protein that specifically cleaves parts of other proteins. It is an intramembrane aspartyl protease with the conserved active site motifs 'YD' and 'GxGD' in adjacent transmembrane domains (TMDs). Its sequences is highly conserved in different vertebrate species. SPP cleaves remnant signal peptides left behind in membrane by the action of signal peptidase and also plays key roles in immune surveillance and the maturation of certain viral proteins.

<span class="mw-page-title-main">Gamma secretase</span>

Gamma secretase is a multi-subunit protease complex, itself an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. Proteases of this type are known as intramembrane proteases. The most well-known substrate of gamma secretase is amyloid precursor protein, a large integral membrane protein that, when cleaved by both gamma and beta secretase, produces a short 37-43 amino acid peptide called amyloid beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma secretase is also critical in the related processing of several other type I integral membrane proteins, such as Notch, ErbB4, E-cadherin, N-cadherin, ephrin-B2, or CD44.

<span class="mw-page-title-main">Caspase 10</span> Protein-coding gene in the species Homo sapiens

Caspase-10 is an enzyme that, in humans, is encoded by the CASP10 gene.

<span class="mw-page-title-main">KLK10</span> Protein-coding gene in the species Homo sapiens

Kallikrein-10 is a protein that in humans is encoded by the KLK10 gene.

<span class="mw-page-title-main">HTRA1</span> Protein-coding gene in the species Homo sapiens

Serine protease HTRA1 is an enzyme that in humans is encoded by the HTRA1 gene. The HTRA1 protein is composed of four distinct protein domains. They are from amino-terminus to carboxyl-terminus an Insulin-like growth factor binding domain, a kazal domain, a trypsin-like peptidase domain and a PDZ domain.

<span class="mw-page-title-main">KLK4</span> Mammalian protein found in Homo sapiens

Kallikrein-related peptidase 4 is a protein which in humans is encoded by the KLK4 gene.

<span class="mw-page-title-main">SERPINE2</span> Protein-coding gene in the species Homo sapiens

Glia-derived nexin is a protein that in humans is encoded by the SERPINE2 gene.

<span class="mw-page-title-main">HM13</span> Protein-coding gene in the species Homo sapiens

Minor histocompatibility antigen H13 is a protein that in humans is encoded by the HM13 gene.

<span class="mw-page-title-main">HGFAC</span> Protein-coding gene in humans

Hepatocyte growth factor activator is a protein that in humans is encoded by the HGFAC gene.

<span class="mw-page-title-main">Cathepsin W</span> Protein-coding gene in the species Homo sapiens

Cathepsin W is a protein that in humans is encoded by the CTSW gene.

<span class="mw-page-title-main">NAPSA</span> Protein-coding gene in humans

Napsin-A is an aspartic proteinase that is encoded in humans by the NAPSA gene. The name napsin comes from novel aspartic proteinase of the pepsin family.

<span class="mw-page-title-main">USP39</span> Protein-coding gene in the species Homo sapiens

U4/U6.U5 tri-snRNP-associated protein 2 is a protein that in humans is encoded by the USP39 gene.

<span class="mw-page-title-main">UNQ1887</span> Protein-coding gene in the species Homo sapiens

Signal peptide peptidase 3, also known as UNQ1887, is a human gene.

<span class="mw-page-title-main">SPPL2B</span> Protein-coding gene in the species Homo sapiens

Signal peptide peptidase-like 2B, also known as SPPL2B, is a human gene.

<span class="mw-page-title-main">USP48</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 48 is an enzyme that in humans is encoded by the USP48 gene.

<span class="mw-page-title-main">USP2</span> Protein-coding gene in the species Homo sapiens

Ubiquitin carboxyl-terminal hydrolase 2 is an enzyme that in humans is encoded by the USP2 gene.

<span class="mw-page-title-main">PMPCA</span> Protein-coding gene in humans

Mitochondrial-processing peptidase subunit alpha is an enzyme that in humans is encoded by the PMPCA gene. This gene PMPCA encoded a protein that is a member of the peptidase M16 family. This protein is located in the mitochondrial matrix and catalyzes the cleavage of the leader peptides of precursor proteins newly imported into the mitochondria, though it only functions as part of a heterodimeric complex.

<span class="mw-page-title-main">PARL</span> Protein-coding gene in the species Homo sapiens

Presenilins-associated rhomboid-like protein, mitochondrial (PSARL), also known as PINK1/PGAM5-associated rhomboid-like protease (PARL), is an inner mitochondrial membrane protein that in humans is encoded by the PARL gene on chromosome 3. It is a member of the rhomboid family of intramembrane serine proteases. This protein is involved in signal transduction and apoptosis, as well as neurodegenerative diseases and type 2 diabetes.

<span class="mw-page-title-main">Rhomboid protease</span>

The rhomboid proteases are a family of enzymes that exist in almost all species. They are proteases: they cut the polypeptide chain of other proteins. This proteolytic cleavage is irreversible in cells, and an important type of cellular regulation. Although proteases are one of the earliest and best studied class of enzyme, rhomboids belong to a much more recently discovered type: the intramembrane proteases. What is unique about intramembrane proteases is that their active sites are buried in the lipid bilayer of cell membranes, and they cleave other transmembrane proteins within their transmembrane domains. About 30% of all proteins have transmembrane domains, and their regulated processing often has major biological consequences. Accordingly, rhomboids regulate many important cellular processes, and may be involved in a wide range of human diseases.

Intramembrane proteases (IMPs), also known as intramembrane-cleaving proteases (I-CLiPs), are enzymes that have the property of cleaving transmembrane domains of integral membrane proteins. All known intramembrane proteases are themselves integral membrane proteins with multiple transmembrane domains, and they have their active sites buried within the lipid bilayer of cellular membranes. Intramembrane proteases are responsible for proteolytic cleavage in the cell signaling process known as regulated intramembrane proteolysis (RIP).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000138600 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027366 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: SPPL2A signal peptide peptidase-like 2A".
  6. Behnke J, Schneppenheim J, Koch-Nolte F, Haag F, Saftig P, Schröder B (2011). "Signal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tail". FEBS Letters. 585 (19): 2951–7. doi: 10.1016/j.febslet.2011.08.043 . PMID   21896273.
  7. Friedmann E, Hauben E, Maylandt K, et al. (2006). "SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production". Nat. Cell Biol. 8 (8): 843–8. doi:10.1038/ncb1440. PMID   16829952. S2CID   129089.
  8. Fluhrer R, Grammer G, Israel L, et al. (2006). "A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b" (PDF). Nat. Cell Biol. 8 (8): 894–6. doi:10.1038/ncb1450. PMID   16829951. S2CID   23712486.

Further reading