STARD13

Last updated
STARD13
Protein STARD13 PDB 2h80.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases STARD13 , ARHGAP37, DLC2, GT650, LINC00464, StAR related lipid transfer domain containing 13
External IDs OMIM: 609866 MGI: 2385331 HomoloGene: 64844 GeneCards: STARD13
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001163493
NM_146258
NM_001359985

RefSeq (protein)

NP_001156965
NP_666370
NP_001346914

Location (UCSC) Chr 13: 33.1 – 33.35 Mb Chr 5: 150.96 – 151.16 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

StAR-related lipid transfer domain protein 13 (STARD13) also known as deleted in liver cancer 2 protein (DLC-2) is a protein that in humans is encoded by the STARD13 gene and a member of the DLC family of proteins. [5] [6]

Contents

Function and structure

STARD13 serves as a Rho GTPase-activating protein (GAP), a type of protein that regulates members of the Rho family of GTPases. [7] It selectively activates RhoA and CDC42 and suppresses cell growth by inhibiting actin stress fiber assembly. [7]

The protein consists of an N-terminal sterile alpha motif (SAM) domain, [8] a serine-rich domain, a RhoGAP domain and at the C-terminus, a StAR-related lipid-transfer domain (START).

Tissue distribution and pathology

The protein was identified in part through its differential expression in cancers. A low level of STARD13 was observed in less differentiated hepatocellular carcinoma tissue with higher RhoA expression. A small patient study finds that the absence of STARD13 in hepatocellular carcinomas correlates with higher levels of RhoA and a poorer prognosis than patients with carcinomas that were STARD13-positive. [9]

Model organisms

Model organisms have been used in the study of STARD13 function. A conditional knockout mouse line, called Stard13tm1a(KOMP)Wtsi [15] [16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute. [17] [18] [19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [13] [20] Twenty four tests were carried out on mutant mice and two significant abnormalities were observed. Female homozygous mutants had an increased susceptibility to Citrobacter infection and displayed a decreased hematocrit and hemoglobin content. [13]

Another study of mice lacking STARD13, found it may promote blood vessel formation (angiogenesis), especially by tumor cells. [21] The promotion of angiogenesis with the loss of STARD13 occurs through the actions of RhoA. [21]

Related Research Articles

<span class="mw-page-title-main">Glypican 3</span> Protein-coding gene in the species Homo sapiens

Glypican-3 is a protein that, in humans, is encoded by the GPC3 gene. The GPC3 gene is located on human X chromosome (Xq26) where the most common gene encodes a 70-kDa core protein with 580 amino acids. Three variants have been detected that encode alternatively spliced forms termed Isoforms 1 (NP_001158089), Isoform 3 (NP_001158090) and Isoform 4 (NP_001158091).

<span class="mw-page-title-main">GIT2</span> Protein-coding gene in humans

ARF GTPase-activating protein GIT2 is an enzyme that in humans is encoded by the GIT2 gene.

<span class="mw-page-title-main">SETDB1</span> Enzyme-coding gene in humans

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene. SETDB1 is also known as KMT1E or H3K9 methyltransferase ESET.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">UBAP1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-associated protein 1 is a protein that in humans is encoded by the UBAP1 gene.

<span class="mw-page-title-main">CDH17</span> Protein-coding gene in the species Homo sapiens

Cadherin-17 is a protein that in humans is encoded by the CDH17 gene.

<span class="mw-page-title-main">ARID2</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.

<span class="mw-page-title-main">LRIG1</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeats and immunoglobulin-like domains protein 1 is a protein that in humans is encoded by the LRIG1 gene. It encodes a transmembrane protein that has been shown to interact with receptor tyrosine kinases of the EGFR family and with MET and RET.

<span class="mw-page-title-main">SMYD3</span> Protein-coding gene in the species Homo sapiens

SET and MYND (myeloid-Nervy-DEAF-1) domain-containing protein 3 is a protein that in humans is encoded by the SMYD3 gene.

<span class="mw-page-title-main">RHOT1</span> Protein-coding gene in the species Homo sapiens

Mitochondrial Rho GTPase 1 (MIRO1) is an enzyme that in humans is encoded by the RHOT1 gene on chromosome 17. As a Miro protein isoform, the protein facilitates mitochondrial transport by attaching the mitochondria to the motor/adaptor complex. Through its key role in mitochondrial transport, RHOT1 is involved in mitochondrial homeostasis and apoptosis, as well as Parkinson’s disease (PD) and cancer.

<span class="mw-page-title-main">NCAPH</span> Protein-coding gene in the species Homo sapiens

Condensin complex subunit 2 also known as chromosome-associated protein H (CAP-H) or non-SMC condensin I complex subunit H (NCAPH) is a protein that in humans is encoded by the NCAPH gene. CAP-H is a subunit of condensin I, a large protein complex involved in chromosome condensation. Abnormal expression of NCAPH may be linked to various types of carcinogenesis as a prognostic indicator.

<span class="mw-page-title-main">TBC1D10A</span> Protein-coding gene in the species Homo sapiens

TBC1 domain family member 10A is a protein that in humans is encoded by the TBC1D10A gene.

<span class="mw-page-title-main">RHOBTB3</span> Protein-coding gene in the species Homo sapiens

Rho-related BTB domain-containing protein 3 is a protein that in humans is encoded by the RHOBTB3 gene.

<span class="mw-page-title-main">SMYD4</span> Protein-coding gene in the species Homo sapiens

SET and MYND domain-containing protein 4 is a protein that in humans is encoded by the SMYD4 gene.

<span class="mw-page-title-main">ARHGEF4</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 4 is a protein that in humans is encoded by the ARHGEF4 gene.

<span class="mw-page-title-main">SEC16B</span> Protein-coding gene in the species Homo sapiens

Protein transport protein Sec16B also known as regucalcin gene promoter region-related protein p117 (RGPR-p117) and leucine zipper transcription regulator 2 (LZTR2) is a protein that in humans is encoded by the SEC16B gene.

<span class="mw-page-title-main">STARD8</span> Protein-coding gene in the species Homo sapiens

StAR-related lipid transfer domain protein 8 (STARD8) also known as deleted in liver cancer 3 protein (DLC-3) is a protein that in humans is encoded by the STARD8 gene and is a member of the DLC family.

Rho GTPase activating protein 18 is a protein that in humans is encoded by the ARHGAP18 gene. The gene is also known as MacGAP and bA307O14.2. ARHGAP18 belongs to a family of Rho GTPase-activating proteins that modulate cell signaling.

<span class="mw-page-title-main">ARHGAP25</span> Protein-coding gene in the species Homo sapiens

Rho GTPase activating protein 25 is a protein that in humans is encoded by the ARHGAP25 gene. The gene is also known as KAIA0053. ARHGAP25 belongs to a family of Rho GTPase-modulating proteins that are implicated in actin remodeling, cell polarity, and cell migration.

<span class="mw-page-title-main">CBX7 (gene)</span> Protein-coding gene in the species Homo sapiens

Chromobox homolog 7 is a protein that in humans is encoded by the CBX7 gene. The loss of CBX7 gene expression has been shown to correlate with a malignant form of thyroid cancer.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000133121 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000016128 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Couch FJ, Rommens JM, Neuhausen SL, Bélanger C, Dumont M, Abel K, Bell R, Berry S, Bogden R, Cannon-Albright L, Farid L, Frye C, Hattier T, Janecki T, Jiang P, Kehrer R, Leblanc JF, McArthur-Morrison J, Meney D, Miki Y, Peng Y, Samson C, Schroeder M, Snyder SC, Simard J (August 1996). "Generation of an integrated transcription map of the BRCA2 region on chromosome 13q12-q13". Genomics. 36 (1): 86–99. doi: 10.1006/geno.1996.0428 . PMID   8812419.
  6. "Entrez Gene: STARD13 START domain containing 13".
  7. 1 2 Ching YP, Wong CM, Chan SF, Leung TH, Ng DC, Jin DY, Ng IO (March 2003). "Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma". The Journal of Biological Chemistry. 278 (12): 10824–30. doi: 10.1074/jbc.M208310200 . PMID   12531887.
  8. Li, Hongyan; Fung, King-Leung; Jin, Dong-Yan; Chung, Stephen S. M.; Ching, Yick-Pang; Ng, Irene Oi-lin; Sze, Kong-Hung; Ko, Ben C. B.; Sun, Hongzhe (2007-06-01). "Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2". Proteins. 67 (4): 1154–1166. doi:10.1002/prot.21361. ISSN   1097-0134. PMID   17380510. S2CID   20407564.
  9. Xiaorong L, Wei W, Liyuan Q, Kaiyan Y (2008). "Underexpression of deleted in liver cancer 2 (DLC2) is associated with overexpression of RhoA and poor prognosis in hepatocellular carcinoma". BMC Cancer. 8: 205. doi: 10.1186/1471-2407-8-205 . PMC   2496915 . PMID   18651974.
  10. "Haematology data for Stard13". Wellcome Trust Sanger Institute.
  11. "Salmonella infection data for Stard13". Wellcome Trust Sanger Institute.
  12. "Citrobacter infection data for Stard13". Wellcome Trust Sanger Institute.
  13. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  18. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID   21677718.
  19. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.
  21. 1 2 Lin Y, Chen NT, Shih YP, Liao YC, Xue L, Lo SH (May 2010). "DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration". Oncogene. 29 (20): 3010–6. doi:10.1038/onc.2010.54. PMC   2874629 . PMID   20208559.

Further reading