This article needs additional citations for verification .(August 2020) |
Industry | |
---|---|
Founded | 1981 |
Founder | David Sands |
Headquarters | |
Products | |
Website | www |
ST Robotics is a company based in Cambridge, England, and Princeton, New Jersey, United States. The company designs and manufactures low-cost bench-top industrial robot arms and purpose built Cartesian robots. The company has no sales force and sells their robotic arm products mainly through the Internet as "boxed robots" with distributors around the world.
In 1981, David Sands formed the company Intelligent Artefacts which was based in Cambridge, England. One of its products was educational robot arms. The arms were programmed in the programming language BASIC and would run on any of the popular makes of computers of the time such as Apple (Apple II), Acorn Electron, Atari 8-bit, BBC Micro or the PET. The robot competed with others in that market like the Armdroid. [1] As the language Forth became available on these computers, Sands wrote the first version of RoboForth which enabled the robots to run and respond far faster. A version of RoboForth was also written for Armdroid.
In 1982, Intelligent Artefacts was closed down and a new company formed, also in Cambridge, called Cyber Robotics who sold a redesigned arm known as the Cyber 310. [2] The Cyber 310 had a 5 degrees of freedom (DOF) ability. Hundreds of them were sold around the world between 1981 and 1987. The robot arm was adopted in 1987 by Mike Topping as the basis for the Handy 1, [3] a robotic helper for the severely disabled. Cyber Robotics was bought by the Bibby Corporation in 1982 and it was eventually closed due to lack of sales.
During the period that Intelligent Artifacts was in operation, many inquiries were received for more serious and professional uses of robot arms for which the Cyber 310 was not suitable.[ citation needed ] This alerted David Sands to the potential for manufacturing a bench–top robot arm series, some of which already existed, notably the Zymark.
Sands Technology was formed in 1986 by David Sands with Catherine George who took the role as Director of R&D. The company began to manufacture robot arms, such as the R12 Mk1, R15 and R16, which were used in various applications, including DNA processing [4] and decommissioning nuclear reactors. [5] In 1989, David Sands met Mathew Monforte in New Jersey and the pair decided to expand the company for the American market in 1991 and Sands Technology International was incorporated in New Jersey in 1992. [6] The less personal pseudonym of ST Robotics was coined in 1997 under which both companies now trade. Also in 1992 Sands Technology formed one of the first joint venture companies with the USSR under Perestroika with the formation of Association Robot in Ekaterinburg, now dormant.
ST Robotics uses technology which is based on hybrid stepping motors as opposed to the more usual DC servo motors. For some years the technology had problems from lack of power and motor resonance. These problems were solved with the advent of rare–earth hybrid motors, high voltage micro-stepping drives and incremental encoder feedback. The robots calibrate themselves by driving each axis slowly to a target sensed by a proximity detector. [5] Incremental optical encoders then track along with the motors to check for errors. This is similar to closed loop control but differs from servo control in that the stepping motors run essentially open loop with the potential to close the loop in case of an error.
The ST robot controller uses two processors: an EZ80L92 runs the embedded RoboForth programming language and a Texas digital signal processor (DSP) to control the motors. [7] The DSP is able to control all axes collectively with individual axes ramping up or down as necessary for a compound motion. At the same time it reads back the encoders data and passes this information to the CPU which also uses the DSP's timers. RobWin is a GUI project manager for PC to create and edit projects and save them on disk but RoboForth, the user's program and all data are saved in flash memory in the controller.
In 2018 A new version of the R17, R17HS was created using Teknic motors on axes 1,2,3. These are fast, high power servo motors using the same step and direction signals as used by the stepper motor drivers. Axes 4,5 and optional 6 were left as stepping motors. HT voltage was increased to 75v. At this voltage steppers get very hot so the stepper drivers were changed to Geckodrive G214V to reduce heating and provide a current reduction at rest as well as much quieter operation. As a result, angular speeds of over 180 deg/sec are obtainable while carrying a 2 kg payload.
Also in 2018 a new teach console was added. The basic teach pad is still provided free with a robot but its functions are limited. The new teach console is an optional extra. The teach consoles for most robots are very expensive and require heavy cables between the console and the controller. ST solution is to use a 7-inch tablet that communicates with the controller via Bluetooth. This enables the user to get very close to the robot for careful positioning without any cable going back to the controller. It provides ability to position in Cartesian coordinates both in world and tool modes.
In 2019 ST adopted the Igus Delta robot and markets it as the R18 using an ST Robotics controller. The controller uses the EZ80 in 24 bit ADL mode and robot speeds of 2 cycles per second are possible.
ST Robotics has 5 robot models
R12 - 5 or 6 axis low cost robot arm, 500g payload speeds up to 180 deg/s
R15 - 3 or 4 axis Cartesian robot system using Igus Cartesian robot system with an ST Robotics controller
R17 - 5 or 6 axis robot arm, 3 kg payload
R17HS - as R17 but using Teknic servomotors, 2 kg payload, speeds up to 180 deg/sec
R18 - Delta format arm based on Igus Delta robot with an ST Robotics controller.
Electric and pneumatic grippers and vacuum pickups are also available.
An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on three or more axes.
The Manned Maneuvering Unit (MMU) is an astronaut propulsion unit that was used by NASA on three Space Shuttle missions in 1984. The MMU allowed the astronauts to perform untethered extravehicular spacewalks at a distance from the shuttle. The MMU was used in practice to retrieve a pair of faulty communications satellites, Westar VI and Palapa B2. Following the third mission the unit was retired from use. A smaller successor, the Simplified Aid For EVA Rescue (SAFER), was first flown in 1994, and is intended for emergency use only.
In machining, numerical control, also called computer numerical control (CNC), is the automated control of tools by means of a computer. It is used to operate tools such as drills, lathes, mills, grinders, routers and 3D printers. CNC transforms a piece of material into a specified shape by following coded programmed instructions and without a manual operator directly controlling the machining operation.
Canadarm or Canadarm1 is a series of robotic arms that were used on the Space Shuttle orbiters to deploy, manoeuvre, and capture payloads. After the Space Shuttle Columbia disaster, the Canadarm was always paired with the Orbiter Boom Sensor System (OBSS), which was used to inspect the exterior of the shuttle for damage to the thermal protection system.
The PUMA is an industrial robotic arm developed by Victor Scheinman at pioneering robot company Unimation. Initially developed by Unimation for General Motors, the PUMA was based on earlier designs Scheinman invented while at Stanford University based on sponsorship and mentoring from robot inventor George Devol.
A Cartesian coordinate robot is an industrial robot whose three principal axes of control are linear and are at right angles to each other. The three sliding joints correspond to moving the wrist up-down, in-out, back-forth. Among other advantages, this mechanical arrangement simplifies the robot control arm solution. It has high reliability and precision when operating in three-dimensional space. As a robot coordinate system, it is also effective for horizontal travel and for stacking bins.
FANUC is a Japanese group of companies that provide automation products and services such as robotics and computer numerical control wireless systems. These companies are principally FANUC Corporation of Japan, Fanuc America Corporation of Rochester Hills, Michigan, USA, and FANUC Europe Corporation S.A. of Luxembourg.
KUKA is a German manufacturer of industrial robots and factory automation systems. In 2016, the company was acquired by the Chinese appliance manufacturer Midea Group.
Motion control is a sub-field of automation, encompassing the systems or sub-systems involved in moving parts of machines in a controlled manner. Motion control systems are extensively used in a variety of fields for automation purposes, including precision engineering, micromanufacturing, biotechnology, and nanotechnology. The main components involved typically include a motion controller, an energy amplifier, and one or more prime movers or actuators. Motion control may be open loop or closed loop. In open loop systems, the controller sends a command through the amplifier to the prime mover or actuator, and does not know if the desired motion was actually achieved. Typical systems include stepper motor or fan control. For tighter control with more precision, a measuring device may be added to the system. When the measurement is converted to a signal that is sent back to the controller, and the controller compensates for any error, it becomes a Closed loop System.
Victor David Scheinman was an American pioneer in the field of robotics. He was born in Augusta, Georgia, where his father Léonard was stationed with the US Army. At the end of the war, the family moved to Brooklyn and his father returned to work as a professor of psychiatry. His mother taught at a Hebrew school.
A coordinate-measuring machine (CMM) is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, the most common being mechanical and laser sensors, though optical and white light sensors do exist. Depending on the machine, the probe position may be manually controlled by an operator, or it may be computer controlled. CMMs typically specify a probe's position in terms of its displacement from a reference position in a three-dimensional Cartesian coordinate system. In addition to moving the probe along the X, Y, and Z axes, many machines also allow the probe angle to be controlled to allow measurement of surfaces that would otherwise be unreachable.
An articulated robot is a robot with rotary joints that has 6 or more Degrees of Freedom. This is one of the most commonly used robots in industry today. Articulated robots can range from simple 6 Degree of Freedom structures to systems with 10 or more interacting joints and materials. They are powered by a variety of means, including electric motors.
EPSON Robots is the robotics design and manufacturing department of Japanese corporation Seiko Epson, the brand-name watch and computer printer producer.
Intelligent lighting refers to lighting that has automated or mechanical abilities beyond those of conventional, stationary illumination. Although the most advanced intelligent lights can produce extraordinarily complex effects, the intelligence lies with the human lighting designer, control system programmer, or the lighting operator, rather than the fixture itself. For this reason, intelligent lighting (ILS) is also known as automated lighting, moving lights, moving heads, or simply movers.
Qfix robot kits are an education tool for teaching robotics. They are used in schools, high schools and mechatronics training in companies. The robot kits are also used by hobby robot builders. The qfix kits are often found in the RoboCup Junior competition where soccer robots are built of the kit's components.
Six degrees of freedom (6DOF), or sometimes six degrees of movement, refers to the six mechanical degrees of freedom of movement of a rigid body in three-dimensional space. Specifically, the body is free to change position as forward/backward (surge), up/down (heave), left/right (sway) translation in three perpendicular axes, combined with changes in orientation through rotation about three perpendicular axes, often termed yaw, pitch, and roll.
The SCARA is a type of industrial robot. The acronym stands for Selective Compliance Assembly Robot Arm or Selective Compliance Articulated Robot Arm.
A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot. The links of such a manipulator are connected by joints allowing either rotational motion or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The terminus of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand. However, the term "robotic hand" as a synonym of the robotic arm is often proscribed.
Robot Combat League (RCL) is a U.S. television show on the Syfy network about robot fighting competitions. On the show, teams use exosuits to control fighting robots. The series is hosted by Chris Jericho and was first shown on February 26, 2013, at 10pm EST.
A high performance positioning system (HPPS) is a type of positioning system consisting of a piece of electromechanics equipment (e.g. an assembly of linear stages and rotary stages) that is capable of moving an object in a three-dimensional space within a work envelope. Positioning could be done point to point or along a desired path of motion. Position is typically defined in six degrees of freedom, including linear, in an x,y,z cartesian coordinate system, and angular orientation of yaw, pitch, roll. HPPS are used in many manufacturing processes to move an object (tool or part) smoothly and accurately in six degrees of freedom, along a desired path, at a desired orientation, with high acceleration, high deceleration, high velocity and low settling time. It is designed to quickly stop its motion and accurately place the moving object at its desired final position and orientation with minimal jittering.
The early version of the Handy 1 system consisted of a Cyber 310 robotic arm with five degrees of freedom plus a gripper.
{{cite web}}
: CS1 maint: multiple names: authors list (link)