Saha ionization equation

Last updated

In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. [1] [2] The equation is a result of combining ideas of quantum mechanics and statistical mechanics and is used to explain the spectral classification of stars. The expression was developed by physicist Meghnad Saha in 1920. [3] [4] It is discussed in many textbooks on statistical physics and plasma physics, such as Drake's book. [5]

Contents

Description

For a gas at a high enough temperature (here measured in energy units, i.e. keV or J) and/or density, the thermal collisions of the atoms will ionize some of the atoms, making an ionized gas. When several or more of the electrons that are normally bound to the atom in orbits around the atomic nucleus are freed, they form an independent electron gas cloud co-existing with the surrounding gas of atomic ions and neutral atoms. With sufficient ionization, the gas can become the state of matter called plasma.

The Saha equation describes the degree of ionization for any gas in thermal equilibrium as a function of the temperature, density, and ionization energies of the atoms. The Saha equation only holds for weakly ionized plasmas for which the Debye length is small. This means that the screening of the Coulomb interaction of ions and electrons by other ions and electrons is negligible. The subsequent lowering of the ionization potentials and the "cutoff" of the partition function is therefore also negligible.

For a gas composed of a single atomic species, the Saha equation is written: where:

The expression is the energy required to remove the -th electron. In the case where only one level of ionization is important, we have and defining the total density n as , the Saha equation simplifies to: where is the energy of ionization. We can define the degree of ionization and find

This gives a quadratic equation that can be solved in closed form:

For small , , so that the ionization decreases with density.

As a simple example, imagine a gas of monatomic hydrogen atoms, set and let electron-volts = 158,000 Kelvin, the ionization energy of hydrogen from its ground state. Let which is the Loschmidt constant, or particle density of Earth's atmosphere at standard pressure and temperature. At K, the ionization is essentially none: and there would almost certainly be no ionized atoms in the volume of Earth's atmosphere. increases rapidly with , reaching 0.35 for . There is substantial ionization even though this is much less than the ionization energy (although this depends somewhat on density). This is a common occurrence. Physically, it stems from the fact that at a given temperature, the particles have a distribution of energies, including some with several times . These high energy particles are much more effective at ionizing atoms. In Earth's atmosphere, ionization is actually governed not by the Saha equation but by very energetic cosmic rays, largely muons. These particles are not in thermal equilibrium with the atmosphere, so they are not at its temperature and the Saha logic does not apply.

Ionization of hydrogen from the Saha equation vs. temperature for three total ion number densities (relative to the [Loschmidt constant]. Saha ionization hyd.svg
Ionization of hydrogen from the Saha equation vs. temperature for three total ion number densities (relative to the [ Loschmidt constant].

Particle densities

The Saha equation is useful for determining the ratio of particle densities for two different ionization levels. The most useful form of the Saha equation for this purpose is where Z denotes the partition function. The Saha equation can be seen as a restatement of the equilibrium condition for the chemical potentials:

This equation simply states that the potential for an atom of ionization state i to ionize is the same as the potential for an electron and an atom of ionization state i+1; the potentials are equal, therefore the system is in equilibrium and no net change of ionization will occur.

Stellar atmospheres

In the early twenties Ralph H. Fowler (in collaboration with Charles Galton Darwin) developed a new method in statistical mechanics permitting a systematic calculation of the equilibrium properties of matter. He used this to provide a rigorous derivation of the ionization formula which Saha had obtained, by extending to the ionization of atoms the theorem of Jacobus Henricus van 't Hoff, used in physical chemistry for its application to molecular dissociation. Also, a significant improvement in the Saha equation introduced by Fowler was to include the effect of the excited states of atoms and ions. A further important step forward came in 1923, when Edward Arthur Milne and R.H. Fowler published a paper in the Monthly Notices of the Royal Astronomical Society , showing that the criterion of the maximum intensity of absorption lines (belonging to subordinate series of a neutral atom) was much more fruitful in giving information about physical parameters of stellar atmospheres than the criterion employed by Saha which consisted in the marginal appearance or disappearance of absorption lines. The latter criterion requires some knowledge of the relevant pressures in the stellar atmospheres, and Saha following the generally accepted view at the time assumed a value of the order of 1 to 0.1 atmosphere. Milne wrote:

Saha had concentrated on the marginal appearances and disappearances of absorption lines in the stellar sequence, assuming an order of magnitude for the pressure in a stellar atmosphere and calculating the temperature where increasing ionization, for example, inhibited further absorption of the line in question owing to the loss of the series electron. As Fowler and I were one day stamping round my rooms in Trinity and discussing this, it suddenly occurred to me that the maximum intensity of the Balmer lines of hydrogen, for example, was readily explained by the consideration that at the lower temperatures there were too few excited atoms to give appreciable absorption, whilst at the higher temperatures there are too few neutral atoms left to give any absorption. ..That evening I did a hasty order of magnitude calculation of the effect and found that to agree with a temperature of 10000° [K] for the stars of type A0, where the Balmer lines have their maximum, a pressure of the order of 10−4 atmosphere was required. This was very exciting, because standard determinations of pressures in stellar atmospheres from line shifts and line widths had been supposed to indicate a pressure of the order of one atmosphere or more, and I had begun on other grounds to disbelieve this. [6]

The generally accepted view at the time assumed that the composition of stars were similar to Earth. However, in 1925 Cecilia Payne used Saha's ionization theory to calculate that the composition of stellar atmospheres is as we now know them; mostly hydrogen and helium, expanding the knowledge of stars. [7]

Stellar coronae

Saha equilibrium prevails when the plasma is in local thermodynamic equilibrium, which is not the case in the optically-thin corona. Here the equilibrium ionization states must be estimated by detailed statistical calculation of collision and recombination rates.

The early universe

Equilibrium ionization, described by the Saha equation, explains evolution in the early universe. After the Big Bang, all atoms were ionized, leaving mostly protons and electrons. According to Saha's approach, when the universe had expanded and cooled such that the temperature reached about 3,000 K, electrons recombined with protons forming hydrogen atoms. At this point, the universe became transparent to most electromagnetic radiation. That 3,000 K surface, red-shifted by a factor of about 1,000, generates the 3 K cosmic microwave background radiation, which pervades the universe today.

Related Research Articles

<span class="mw-page-title-main">Boltzmann distribution</span> Probability distribution of energy states of a system

In statistical mechanics and mathematics, a Boltzmann distribution is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. The distribution is expressed in the form:

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

<span class="mw-page-title-main">Fermi–Dirac statistics</span> Statistical description for the behavior of fermions

Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926. Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics.

<span class="mw-page-title-main">Fermi gas</span> Physical model of gases composed of many non-interacting identical fermions

A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.

<span class="mw-page-title-main">Bose–Einstein statistics</span> Description of the behavior of bosons

In quantum statistics, Bose–Einstein statistics describes one of two possible ways in which a collection of non-interacting identical particles may occupy a set of available discrete energy states at thermodynamic equilibrium. The aggregation of particles in the same state, which is a characteristic of particles obeying Bose–Einstein statistics, accounts for the cohesive streaming of laser light and the frictionless creeping of superfluid helium. The theory of this behaviour was developed (1924–25) by Satyendra Nath Bose, who recognized that a collection of identical and indistinguishable particles can be distributed in this way. The idea was later adopted and extended by Albert Einstein in collaboration with Bose.

In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as

<span class="mw-page-title-main">Ground state</span> Lowest energy level of a quantum system

The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.

Space charge is an interpretation of a collection of electric charges in which excess electric charge is treated as a continuum of charge distributed over a region of space rather than distinct point-like charges. This model typically applies when charge carriers have been emitted from some region of a solid—the cloud of emitted carriers can form a space charge region if they are sufficiently spread out, or the charged atoms or molecules left behind in the solid can form a space charge region.

<span class="mw-page-title-main">Drude model</span> Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

In statistical mechanics, the grand canonical ensemble is the statistical ensemble that is used to represent the possible states of a mechanical system of particles that are in thermodynamic equilibrium with a reservoir. The system is said to be open in the sense that the system can exchange energy and particles with a reservoir, so that various possible states of the system can differ in both their total energy and total number of particles. The system's volume, shape, and other external coordinates are kept the same in all possible states of the system.

In plasmas and electrolytes, the Debye length, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are increasingly electrically screened and the electric potential decreases in magnitude by 1/e. A Debye sphere is a volume whose radius is the Debye length. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

<span class="mw-page-title-main">Einstein coefficients</span> Quantities describing probability of absorption or emission of light

In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.

The Poisson–Boltzmann equation describes the distribution of the electric potential in solution in the direction normal to a charged surface. This distribution is important to determine how the electrostatic interactions will affect the molecules in solution. The Poisson–Boltzmann equation is derived via mean-field assumptions. From the Poisson–Boltzmann equation many other equations have been derived with a number of different assumptions.

The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution. The Debye–Hückel equation provides a starting point for modern treatments of non-ideality of electrolyte solutions.

Defect types include atom vacancies, adatoms, steps, and kinks that occur most frequently at surfaces due to the finite material size causing crystal discontinuity. What all types of defects have in common, whether surface or bulk defects, is that they produce dangling bonds that have specific electron energy levels different from those of the bulk. This difference occurs because these states cannot be described with periodic Bloch waves due to the change in electron potential energy caused by the missing ion cores just outside the surface. Hence, these are localized states that require separate solutions to the Schrödinger equation so that electron energies can be properly described. The break in periodicity results in a decrease in conductivity due to defect scattering.

<span class="mw-page-title-main">Recombination (cosmology)</span> Epoch c. 370,000 years after the Big Bang

In cosmology, recombination refers to the epoch during which charged electrons and protons first became bound to form electrically neutral hydrogen atoms. Recombination occurred about 378,000 years after the Big Bang. The word "recombination" is misleading, since the Big Bang theory does not posit that protons and electrons had been combined before, but the name exists for historical reasons since it was named before the Big Bang hypothesis became the primary theory of the birth of the universe.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

<span class="mw-page-title-main">Coronal radiative losses</span>

In astronomy and in astrophysics, for radiative losses of the solar corona, it is meant the energy flux radiated from the external atmosphere of the Sun, and, in particular, the processes of production of the radiation coming from the solar corona and transition region, where the plasma is optically-thin. On the contrary, in the chromosphere, where the temperature decreases from the photospheric value of 6000 K to the minimum of 4400 K, the optical depth is about 1, and the radiation is thermal.

Thermal ionization, also known as surface ionization or contact ionization, is a physical process whereby the atoms are desorbed from a hot surface, and in the process are ionized.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

References

  1. Alexander A. Fridman (2008). Plasma Chemistry . Cambridge, UK: Cambridge University Press. pp.  94. ISBN   978-0-521-84735-3.
  2. Chen, Francis F. (2016). Introduction to Plasma Physics and Controlled Fusion. p. 2. Bibcode:2016ippc.book.....C. doi:10.1007/978-3-319-22309-4. ISBN   978-3-319-22309-4.
  3. Saha, Megh Nad (1920). "LIII.Ionization in the solar chromosphere". Philosophical Magazine. Series 6. 40 (238): 472–488. doi:10.1080/14786441008636148.
  4. Saha, M. N. (1921). "On a Physical Theory of Stellar Spectra". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 99 (697): 135–153. Bibcode:1921RSPSA..99..135S. doi: 10.1098/rspa.1921.0029 .
  5. Drake, R. Paul (2018), Drake, R Paul (ed.), "Properties of High-Energy-Density Plasmas", High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, Cham: Springer International Publishing, pp. 51–114, doi:10.1007/978-3-319-67711-8_3, ISBN   978-3-319-67711-8 , retrieved 2024-06-24
  6. "Biographical Memoirs: Meghnad Saha".
  7. Steven Soter and Neil deGrasse Tyson (2000). "Cecilia Payne and the Composition of the Stars". American Museum of Natural History.