Salil Vadhan

Last updated
Salil Vadhan
Salil Vadhan.jpg
Salil Vadhan
CitizenshipUnited States
Education Harvard University (BA)
Massachusetts Institute of Technology (PhD)
Known for Zig-zag product
Awards
Scientific career
Fields Computational complexity theory, Cryptography
Institutions Harvard University
Doctoral advisor Shafi Goldwasser

Salil Vadhan is an American computer scientist. He is Vicky Joseph Professor of Computer Science and Applied Mathematics at Harvard University. [1] After completing his undergraduate degree in Mathematics and Computer Science at Harvard in 1995, he obtained his PhD in Applied Mathematics from Massachusetts Institute of Technology in 1999, where his advisor was Shafi Goldwasser. [2] His research centers around the interface between computational complexity theory and cryptography. He focuses on the topics of pseudorandomness and zero-knowledge proofs. His work on the zig-zag product, with Omer Reingold and Avi Wigderson, was awarded the 2009 Gödel Prize. [3]

Contents

Contributions

Zig-zag graph product for constructing expander graphs

One of the main contributions of his work is a new type of graph product, called the zig-zag product.

Taking a product of a large graph with a small graph, the resulting graph inherits (roughly) its size from the large one, its degree from the small one, and its expansion properties from both. Iteration yields simple explicit constructions of constant-degree expanders of every size, starting from one constant-size expander.

Crucial to the intuition and simple analysis of the properties of the zig-zag product is the view of expanders as functions that act as "entropy wave" propagators—they transform probability distributions in which entropy is concentrated in one area to distributions where that concentration is dissipated. In these terms, the graph product affords the constructive interference of two such waves.

A variant of this product can be applied to extractors, giving the first explicit extractors whose seed length depends (poly)logarithmically on only the entropy deficiency of the source (rather than its length) and that extract almost all the entropy of high min-entropy sources. These high min-entropy extractors have several interesting applications, including the first constant-degree explicit expanders that beat the "eigenvalue bound."

Vadhan also came up with another simplified approach [4] to the undirected ST-connectivity problem following Reingold's breakthrough result. Also the zig-zag product was useful in Omer Reingold's proof that SL=L.

Zero-knowledge proofs

His work in this area is to use complexity-theoretic methods to understand the power and limitations of zero-knowledge proofs. In a series of papers with Oded Goldreich and Amit Sahai, they gained thorough understanding of the class SZK of problems possessing statistical zero-knowledge proofs, characterized the class SZK and proved that SZK is closed under various operations. Recently his work was trying to work on the zero-knowledge proof beyond the confines of SZK class.

Randomness extractors

With Lu, Omer Reingold, and Avi Wigderson, he gave the first construction of randomness extractors that are "optimal up to constant factors," reaching a milestone in a decade of work on the subject.

With Trevisan, Zuckerman, Kamp, and Rao, he developed a theory of randomness extraction (and data compression) from samplable sources, which are random sources generated by an (unknown) efficient algorithm.

Recognition

Vadhan was elected as an ACM Fellow in 2018 for "advancing computational complexity and cryptography, and for promoting public support for theoretical computer science." [5]

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

<span class="mw-page-title-main">Interactive proof system</span>

In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: a prover and a verifier. The parties interact by exchanging messages in order to ascertain whether a given string belongs to a language or not. The prover possesses unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct.

The year 2000 in science and technology involved some significant events.

The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory. The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the "P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time.

In computational complexity theory, a natural proof is a certain kind of proof establishing that one complexity class differs from another one. While these proofs are in some sense "natural", it can be shown that no such proof can possibly be used to solve the P vs. NP problem.

<span class="mw-page-title-main">Shafi Goldwasser</span> Israeli American computer scientist

Shafrira Goldwasser is an Israeli-American computer scientist and winner of the Turing Award in 2012. She is the RSA Professor of Electrical Engineering and Computer Science at Massachusetts Institute of Technology; a professor of mathematical sciences at the Weizmann Institute of Science, Israel; the director of the Simons Institute for the Theory of Computing at the University of California, Berkeley; and co-founder and chief scientist of Duality Technologies.

In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.

Randomized Logarithmic-space (RL), sometimes called RLP, is the complexity class of computational complexity theory problems solvable in logarithmic space and polynomial time with probabilistic Turing machines with one-sided error. It is named in analogy with RP, which is similar but has no logarithmic space restriction.

In cryptography, a verifiable random function (VRF) is a public-key pseudorandom function that provides proofs that its outputs were calculated correctly. The owner of the secret key can compute the function value as well as an associated proof for any input value. Everyone else, using the proof and the associated public key, can check that this value was indeed calculated correctly, yet this information cannot be used to find the secret key.

In combinatorial mathematics, rotation systems encode embeddings of graphs onto orientable surfaces by describing the circular ordering of a graph's edges around each vertex. A more formal definition of a rotation system involves pairs of permutations; such a pair is sufficient to determine a multigraph, a surface, and a 2-cell embedding of the multigraph onto the surface.

<span class="mw-page-title-main">Avi Wigderson</span> Israeli mathematician and computer scientist

Avi Wigderson is an Israeli mathematician and computer scientist. He is the Herbert H. Maass Professor in the school of mathematics at the Institute for Advanced Study in Princeton, New Jersey, United States of America. His research interests include complexity theory, parallel algorithms, graph theory, cryptography, distributed computing, and neural networks. Wigderson received the Abel Prize in 2021 for his work in theoretical computer science.

Omer Reingold is an Israeli computer scientist. He is the Rajeev Motwani professor of Computer Science in the Computer Science Department at Stanford University and the director of the Simons Collaboration on the Theory of Algorithmic Fairness. He received a PhD in computer science at Weizmann in 1998 under Moni Naor. He received the 2005 Grace Murray Hopper Award for his work in finding a deterministic logarithmic-space algorithm for st-connectivity in undirected graphs. He, along with Avi Wigderson and Salil Vadhan, won the Gödel Prize (2009) for their work on the zig-zag product. He became a Fellow of the Association for Computing Machinery in 2014 "For contributions to the study of pseudorandomness, derandomization, and cryptography."

In the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary and binary operations.

A symmetric Turing machine is a Turing machine which has a configuration graph that is undirected.

In graph theory, the zig-zag product of regular graphs , denoted by , is a binary operation which takes a large graph and a small graph and produces a graph that approximately inherits the size of the large one but the degree of the small one. An important property of the zig-zag product is that if is a good expander, then the expansion of the resulting graph is only slightly worse than the expansion of .

In mathematics, a rotation map is a function that represents an undirected edge-labeled graph, where each vertex enumerates its outgoing neighbors. Rotation maps were first introduced by Reingold, Vadhan and Wigderson in order to conveniently define the zig-zag product and prove its properties. Given a vertex and an edge label , the rotation map returns the 'th neighbor of and the edge label that would lead back to .

Nathan (Nati) Linial is an Israeli mathematician and computer scientist, a professor in the Rachel and Selim Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem, and an ISI highly cited researcher.

<span class="mw-page-title-main">Amit Sahai</span>

Amit Sahai is an American computer scientist. He is a professor of computer science at UCLA and the director of the Center for Encrypted Functionalities.

In graph theory, the replacement product of two graphs is a graph product that can be used to reduce the degree of a graph while maintaining its connectivity.

In cryptography, indistinguishability obfuscation is a type of software obfuscation with the defining property that obfuscating any two programs that compute the same mathematical function results in programs that cannot be distinguished from each other. Informally, such obfuscation hides the implementation of a program while still allowing users to run it. Formally, IO satisfies the property that obfuscations of two circuits of the same size which implement the same function are computationally indistinguishable.

References

  1. Harvard faculty directory.
  2. Salil Vadhan at the Mathematics Genealogy Project.
  3. 2009 Gödel Prize, European Association for Theoretical Computer Science.
  4. Rozenman-Vadhan.
  5. 2018 ACM Fellows Honored for Pivotal Achievements that Underpin the Digital Age, Association for Computing Machinery, December 5, 2018