Sammy Boussiba | |
---|---|
Born | Fez, Morocco | 30 August 1947
Nationality | Israeli |
Alma mater | Ben-Gurion University of the Negev |
Scientific career | |
Fields | Microalgae |
Institutions | Ben-Gurion University of the Negev |
Doctoral advisor | Amos Richmond |
Sammy Boussiba is a professor emeritus at the French Associates Institute for Agriculture and Biotechnology of Drylands at the Jacob Blaustein Institutes for Desert Research at Ben-Gurion University of the Negev, Israel.
Sammy Boussiba was born in Fez, Morocco to a Jewish family. In 1956 he emigrated to Israel with his parents and two brothers. He began his academic path in 1969, and received his bachelor's and master's degrees from the Hebrew University of Jerusalem and from BGU. He moved on to his doctorate studies at BGU, focusing on the role of the biliprotein picocyanin C and the influence of environmental factors on its metabolism, under the supervision of Professor Amos Richmond. He completed his PhD in 1981 and continued to his postdoctoral studies at Cornell University, with scholarships from the Rothschild and Fulbright foundations. At Cornell he studied the uptake and metabolism of ammonia in cyanobacteria.
In 1984, upon completing his postdoctoral studies and returning to Israel, Boussiba joined the Microalgal Biotechnology Laboratory (MBL) at Jacob Blaustein Institutes for Desert Research BIDR, BGU. He has served as the head of the lab since 1995. [1] During the years 2001–2005 he also served as the substitute to the director of BIDR and during the years 2008–2015 he served as director of the French Associates Institute for Agriculture and Biotechnology of Drylands at BIDR.
In 2003 Boussiba was awarded an honorary doctorate (honoris causa) from the University of West Hungary, which was the first European university to establish an agriculture faculty. [2] He was bestowed with the economical botanics chair from BGU. Since 2004 he has served in the board of directors of the International Society of Applied Phycology. [3] In 2005 he was elected as the president of the society, and also served as its president between 2008 and 2011. In a conference which took place in Australia in June 2014, Professor Boussiba received a special award of appreciation from this society, for his continual and outstanding contribution to the field of applied phycology research. Between 2009 and 2012 Boussiba served as a member of the board of directors at the Inter-University Marine Biology and Biotechnology Institute in Eilat. In 2009 he was elected for an ad-hoc committee nominated by the National Science Academy of the United States, aimed at examining the sustainable development of algal fuels and oils, [4] in which he served for two years. The committee's conclusions were published in a report aiming to formulate the US government's policy on alternative fuels. [5] Since 2009 Boussiba has also served as a member of the European Algae Biomass Association (EABA), and since 2014 he has served as the head of its scientific board. [6]
Production of astaxanthin from the haematococcus microalgae: [7] The Haematococcus Pluvialis microalgae has been extensively researched for its ability to accumulate large quantities of the astaxanthin pigment, which is a potent naturally occurring anti-oxidant. [8] A synthetic version of this pigment is currently used for obtaining pink-colored salmon fish for marketing. [9] The production of this pigment in Haematococcus Pluvialis is enhanced due to various environmental stresses which limit the growth of the cell under light conditions. The production process is characterized by a transition in the cell's color from green to red, along with various chemical and biochemical changes within the cell which have been widely studied in recent years: defining the conditions under which the pigment is accumulated, studying the biosynthetic process; and examining the possible role of the pigment in protecting the cell from oxidative stress damage. One outcome of this work was the development of a two-stage process for production of astaxanthin – the algae is allowed to grow under optimal conditions for the green stage, then the biomass is subjected to stress conditions such as high light or nutrient deprivation.
One of the main challenges in large-scale production of biomass is the susceptibility to infections, especially when the growth medium is poor in nutrients- enabling the growth of various fungi and foreign algae. Indeed, one of the main pests which can cause the collapse of the Haematococcus Pluvialis culture is a fungus. In Prof. Boussiba's lab this fungus has been researched and isolated and defined as a new species (Paraphyzoderma Sedebokerensis [10] ). This fungi is a specific parasite for Haematococci cells. Following its cultivation under sterile conditions, its life cycle was defined and its mode of infection was studied. Results showed that there are special proteins (lectins) present on the zeospheres of the fungi which recognize specific sugar moieties upon the algal cell wall. The infection process begins with the interaction between the lectins and the sugar moieties, and can end with the collapse of the algae culture.
Prof. Boussiba's researches, spanning over ten years of work, were the basis for the establishment of an astaxanthin production plant from the Haematococcus microalgae in Kibbutz Ketura in the Arava valley – Algatech, which has been active since 2002. [11]
Cloning of Bti bacterial genes into the Anabaena cyanobacteria for eradication of tropical diseases: The Bacillus thuringiensis (Bt) group of bacteria is an important agent used for biological pest control. Bt is a Gram positive, aerobic bacterium which during its sporulation stage produces an endotoxin protein crystal with high toxicity and specificity against various insect larvae. Bt toxins are termed insecticidal crystal proteins (ICPs) and are active within the intestine, thus must be digested by the target organism in order to act. The subspecies Bacillus thuringienesis israelensis (Bti) was isolated by Prof. Joel Margalit and colleagues (1977). It is a specific pesticide of mosquito larvae and of black flies, which transfer a large number of tropical, sometimes fatal diseases. This subspecies produces a crystal composed of four main proteins encoded by four genes which are situated on a single plasmid within the bacterium. However, the use of Bti as a biological pesticide is limited due to its low survivability rate in natural water ponds. One of the ways to overcome the survivability hurdle is to clone the genes encoding for the toxin into other organisms which are more adapted to the harsh environments in question. Due to their large species diversity and high abundancy in natural ponds and rice fields, cyanobacteria have high potential to serve as carriers for the endotoxin genes for pest control of mosquito larvae. Moreover, cyanobacteria are able to float in the upper layer of the water, and are stable under varying environmental conditions, as well as throughout entire growth cycles of the mosquitos, which feed off the cyanobacteria. The most lethal combination of Bti genes was cloned in Prof. Boussiba's laboratory in the Anabaena PCC 7120 cyanobacteria. [12] [13] This pioneering work yielded a transgenic cyanobacteria stably expressing four different Bti genes. The transgenic lines are very stable and are of high toxicity to the larvae. Moreover, they survived under field conditions for longer periods of time than the commercially available Bti pesticide. Since these clones are considered genetically modified organisms (GMO), the widespread use of this technology is still limited. This project, which lasted for several years, included the training of many research students and several prestigious research grants were obtained for it. This project is an example for the fruitful cooperation between two groups which are leading in their field – Prof. Zaritsky's lab and Prof. Boussiba's, where the transgenic cyanobacteria were isolated.
In recent years Prof. Boussiba's researches are focusing on genetic methods for improving microalgae in aim to produce valuable products such as carotenoids and PUFA – polyunsaturated fatty acids. [14] One of the results of these researches is the development of a genetic engineering system for inserting genes into the genomes of two microalgal species of high economical value – Haematococcus Pluvialis for increasing the production rate of astaxanthin, and Parietochloris Incisa – for metabolic engineering of PUFA. Prof. Boussiba has led research projects in cooperation with researchers in Israel and worldwide, and during recent years he has been a partner in a large number of projects under the umbrella of the FP7 program of the European Union. He recently (2010–2013) managed the GIAVAP project- Genetically improved Algae for Valuable Products, [15] [16] in which ten European and two industrial companies from Israel and from abroad took part. This project was aimed at genetic modification of microalgae for production of valuable (5.4 MEuro) products. [17] Prof. Boussiba is also a partner of the Israeli consortium for solar fuels, of the Israeli Centers of Research Excellence – ICORE, [18] for which Ben-Gurion University was awarded with 3 million sheqels over the years 2012–2016. At the end of 2015 his lab received an additional grant of 1.7 million sheqels over three years from the Israeli Ministry of Agriculture, for developing an innovative system for vaccinating poultry against the Newcastle Disease, using genetically modified microalgae.
Midreshet Ben-Gurion, also known as Midreshet Sde Boker, is an educational center and boarding school in southern Israel. Located in the Negev next to kibbutz Sde Boker, it falls under the jurisdiction of Ramat HaNegev Regional Council. In 2021 it had a population of 1,955.
Astaxanthin is a keto-carotenoid within a group of chemical compounds known as terpenes. Astaxanthin is a metabolite of zeaxanthin and canthaxanthin, containing both hydroxyl and ketone functional groups. It is a lipid-soluble pigment with red coloring properties, which result from the extended chain of conjugated double bonds at the center of the compound.
Microalgae or microphytes are microscopic algae invisible to the naked eye. They are phytoplankton typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist individually, or in chains or groups. Depending on the species, their sizes can range from a few micrometers (μm) to a few hundred micrometers. Unlike higher plants, microalgae do not have roots, stems, or leaves. They are specially adapted to an environment dominated by viscous forces.
Ketura is a kibbutz in southern Israel. Located north of Eilat in the Aravah Valley, it falls under the jurisdiction of Hevel Eilot Regional Council. In 2021 it had a population of 506.
Algaculture is a form of aquaculture involving the farming of species of algae.
A photobioreactor (PBR) refers to any cultivation system designed for growing photoautotrophic organisms using artificial light sources or solar light to facilitate photosynthesis. PBRs are typically used to cultivate microalgae, cyanobacteria, and some mosses. PBRs can be open systems, such as raceway ponds, which rely upon natural sources of light and carbon dioxide. Closed PBRs are flexible systems that can be controlled to the physiological requirements of the cultured organism, resulting in optimal growth rates and purity levels. PBRs are typically used for the cultivation of bioactive compounds for biofuels, pharmaceuticals, and other industrial uses.
The Jacob Blaustein Institutes for Desert Research (BIDR) constitute one of the academic faculties of Ben-Gurion University of the Negev (BGU), and are located on BGU's Sede Boqer Campus in Midreshet Ben-Gurion in the heart of the Negev Desert in Israel. The BIDR is home to approximately 70 academic faculty and 90 technical and administrative staff members. In addition, 220 graduate students and 50 post-doctoral scholars, coming from over 30 different countries, study at the BIDR within the framework of the Albert Katz International School for Desert Studies. The BIDR comprises three internationally recognized research institutes: the Zuckerberg Institute for Water Research, the French Associates Institute for Agriculture and Biotechnology of Drylands, and the Swiss Institute for Dryland Environmental Research. The stated mission of the BIDR is to combat desertification and to explore global challenges by bringing together water, food, energy, and environmental research.
Scenedesmus is a genus of green algae, in the class Chlorophyceae. They are colonial and non-motile. They are one of the most common components of phytoplankton in freshwater habitats worldwide.
Haematococcus is a genus of algae in the family Haematococcaceae. Members of this group are a common cause of the pink color found in birdbaths. One of the most notable species of Haematococcus is H. pluvialis, which is used in cosmetic products due to its production of astaxanthin, a powerful antioxidant carotenoid, under stress conditions.
Choricystis is a genus of green algae in the class Trebouxiophyceae, considered a characteristic picophytoplankton in freshwater ecosystems. Choricystis, especially the type species Choricystis minor, has been proposed as an effective source of fatty acids for biofuels. Choricystis algacultures have been shown to survive on wastewater. In particular, Choricystis has been proposed as a biological water treatment system for industrial waste produced by the processing of dairy goods.
Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.
Haematococcus pluvialis is a freshwater species of Chlorophyta from the family Haematococcaceae. This species is well known for its high content of the strong antioxidant astaxanthin, which is important in aquaculture, and cosmetics. The high amount of astaxanthin is present in the resting cells, which are produced and rapidly accumulated when the environmental conditions become unfavorable for normal cell growth. Examples of such conditions include bright light, high salinity, and low availability of nutrients. Haematococcus pluvialis is usually found in temperate regions around the world. Their resting cysts are often responsible for the blood-red colour seen in the bottom of dried out rock pools and bird baths. This colour is caused by astaxanthin which is believed to protect the resting cysts from the detrimental effect of UV-radiation, when exposed to direct sunlight.
Nannochloropsis is a genus of algae comprising six known species. The genus in the current taxonomic classification was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either light or electron microscopy. The characterisation is mostly done by rbcL gene and 18S rRNA sequence analysis.
An algae bioreactor is used for cultivating micro or macroalgae. Algae may be cultivated for the purposes of biomass production (as in a seaweed cultivator), wastewater treatment, CO2 fixation, or aquarium/pond filtration in the form of an algae scrubber. Algae bioreactors vary widely in design, falling broadly into two categories: open reactors and enclosed reactors. Open reactors are exposed to the atmosphere while enclosed reactors, also commonly called photobioreactors, are isolated to varying extents from the atmosphere. Specifically, algae bioreactors can be used to produce fuels such as biodiesel and bioethanol, to generate animal feed, or to reduce pollutants such as NOx and CO2 in flue gases of power plants. Fundamentally, this kind of bioreactor is based on the photosynthetic reaction, which is performed by the chlorophyll-containing algae itself using dissolved carbon dioxide and sunlight. The carbon dioxide is dispersed into the reactor fluid to make it accessible to the algae. The bioreactor has to be made out of transparent material.
Microalgae or microscopic algae grow in either marine or freshwater systems. They are primary producers in the oceans that convert water and carbon dioxide to biomass and oxygen in the presence of sunlight.
Phycotechnology refers to the technological applications of algae, both microalgae and macroalgae.
Avigad Vonshak is a Professor Emeritus at the French Associates Institute for Agriculture and Biotechnology of Drylands at the Jacob Blaustein Institutes for Desert Research at Ben-Gurion University of the Negev, Israel.
Prof. Zvi HaCohen is an Israeli scientist who, since August 2010, has served as Rector of Ben-Gurion University of the Negev (BGU).
Chlorella vulgaris is a species of green microalga in the division Chlorophyta. It is mainly used as a dietary supplement or protein-rich food additive in Japan.
Yoel Margalith was an Israeli researcher. He was a professor at the Ben-Gurion University of the Negev.