Satterlyite | |
---|---|
General | |
Category | Phosphate minerals |
Formula (repeating unit) | (Fe2+,Mg,Fe3+)2(PO4)(OH) |
IMA symbol | Sly [1] |
Strunz classification | 8.BB.20 |
Crystal system | Trigonal |
Crystal class | Ditrigonal pyramidal (3m) H-M symbol: (3m) |
Space group | P31m (no. 162), P31m (no. 157), or P312 (no. 149) |
Unit cell | a = 11.35, c = 5.04 [Å]; Z = 6 |
Identification | |
Color | Light brown to light yellow |
Crystal habit | Aggregate, nodular and radial |
Cleavage | None |
Mohs scale hardness | 4.5–5 |
Luster | Vitreous |
Streak | Pale yellow |
Diaphaneity | Transparent |
Specific gravity | 3.68 |
Optical properties | Uniaxial (−) |
Refractive index | nω = 1.721 nε = 1.719 |
Birefringence | δ = 0.002 |
References | [2] [3] [4] |
Satterlyite is a hydroxyl bearing iron phosphate mineral. The mineral can be found in phosphatic shales and was first discovered in the Big Fish River area in Yukon Territory, Canada.
Satterlyite is part of the phosphate mineral group. Satterlyite is a transparent, light brown to light yellow mineral with a density of 3.68 g/cm3. The structure of satterlyite is made up of two pairs of face shared, distorted (Fe,Mg)O6 octahedra, linked together by sharing edges to form double chains along the [001] plain.
The first satterlyite mineral was discovered in the Big Fish River area in Yukon Territory, westernmost of Canada; by a geologist at Ontario Department of Mines in Canada, Jack Satterly, and the mineral was also named after him (Kolitsch, 2002).
Satterlyite has a formula of (Fe2+,Mg,Fe3+)2(PO4)(OH). Studies using the optical absorption spectra show that satterlyite has similar features to different iron bearing minerals with Fe(III) and Fe(II) impurities. Electron paramagnetic resonance studies were also made on the mineral first by turning the satterlyite mineral fine powder then putting it into an electron paramagnetic resonance quartz tube for measurements. The results showed a strong line on g = 2.0 and another line on g = 8.0, thus also showing a presence of ferrous and ferric ions in satterlyite.
Satterlyite is hydroxyl bearing iron phosphate with a space group P31m. The structure of satterlyite is made up of two pairs of face shared, distorted (Fe,Mg)O6 octahedra, the two faces are linked together by sharing edges to form double chains along the [001] plain. The double chains share ligands with six other double chains to make a 3D network holding three PO4 tetrahedra, linked by the corners to the (Fe,Mg)O6 octahedra (Kolitsch, 2002). The two (Fe,Mg)O6 oOctahedra have different occupancies; the Fe to Mg ratio of the M sites are 0.838(2):0.162(2) for the M(1) site and 0.706(2):0.294(2) for the M(2) site (Kolitsch, 2002). The structure contains three H atoms; two are share ligands with two (Fe,Mg)O6 octahedra and the third strongly disordered H atom is bonded to O of the PO4 tetrahedron (Kolitsch, 2002).
Holtedahlite, a mineral that was found in Tingelstadtjern quarry in Norway, with the formula (Mg12PO4)5(PO3OH,CO3)(OH,O)6 is isostructural with satterlyite (Raade, 1979). Infrared absorption powder spectra show that satterlyite is different from natural haltedahlite in that there is no carbonate for phosphate substitution (Kolitsch, 2002). Satterlyite is also structurally related to phosphoellenbergerite, a mineral that was discovered in Modum, Norway; near San Giocomo Vallone Di Gilba, in Western Alps of Italy (Palache, 1951); the minerals formula is Mg14(PO4)5(PO3OH)2(OH)6 (Kolitsch, 2002).
Electron paramagnetic resonance and optical absorption studies have investigated the iron phosphate mineral satterlyite and gormanite. Results of the optical studies show that both minerals have ferrous and ferric ions (Chandrasekhar, 2003). These studies also show that the site symmetry of Fe(III) in satterlyite is tetragonally distorted. However, the Fe(II) ions is tetragonally distorted octahedral (Chandrasekhar, 2003). The complex structure of satterlyite is made up of two pairs of face shared, distorted (Fe,Mg)O6 octahedra, linked together by sharing edges to form double chains along [001].
Satterlyite has a light brown to light yellow color with a light yellow streak and a hardness of 4.5 to 5. It has no trigonal (ditrigonal pyramidal) crystal symmetry with a space group P3*1m and no cleavage (Mandarino, 1978). The parameters of the mineral are a = 11.35 Å and c = 5.04 Å and the ratio of a to c is 1:0.444 and a cell volume 562.28 Å3 (Mindat, 2011). The mineral is found as one of three habits; aggregated (when the mineral is made up of many individual crystals or clusters), nodular (grows as a circle around the center) or radial (the crystal radiates outwards from the center of a common point on the mineral; Mineralogy Database, 2011).
Jack Satterly, a geologist at Ontario Department of Mines in Canada, discovered satterlyite in nodules in shale in the Big Fish River (Mandarino, 1978). These nodules were about 10 cm in diameter, some would consist of satterlyite only and others would show satterlyite with quartz, pyrite, wolfeite or maricite. The Commission on New Minerals and Mineral Names approved the name of the mineral (Mandarino, 1978). The type specimen is now preserved at the Royal Ontario Museum (Mandarino, 1978).
Brazilianite, whose name derives from its country of origin, Brazil, is a typically yellow-green phosphate mineral, most commonly found in phosphate-rich pegmatites.
Lithiophilite is a mineral containing the element lithium. It is lithium manganese(II) phosphate with chemical formula LiMnPO4. It occurs in pegmatites often associated with triphylite, the iron end member in a solid solution series. The mineral with intermediate composition is known as sicklerite and has the chemical formula Li(Mn,Fe)PO4). The name lithiophilite is derived from the Greek philos (φιλός) "friend", as lithiophilite is usually found with lithium.
Vauxite is a phosphate mineral with the chemical formula Fe2+Al2(PO4)2(OH)2·6(H2O). It belongs to the laueite – paravauxite group, paravauxite subgroup, although Mindat puts it as a member of the vantasselite Al4(PO4)3(OH)3·9H2O group. There is no similarity in structure between vauxite and paravauxite Fe2+Al2(PO4)2(OH)2·8H2O or metavauxite Fe3+Al2(PO4)2(OH)2·8H2O, even though they are closely similar chemically and all minerals occur together as secondary minerals. Vauxite was named in 1922 for George Vaux Junior (1863–1927), an American attorney and mineral collector.
Eosphorite is a brown (occasionally pink) manganese hydrous phosphate mineral with chemical formula: MnAl(PO4)(OH)2·H2O. It is used as a gemstone.
Duftite is a relatively common arsenate mineral with the formula CuPb(AsO4)(OH), related to conichalcite. It is green and often forms botryoidal aggregates. It is a member of the adelite-descloizite Group, Conichalcite-Duftite Series. Duftite and conichalcite specimens from Tsumeb are commonly zoned in color and composition. Microprobe analyses and X-ray powder-diffraction studies indicate extensive substitution of Zn for Cu, and Ca for Pb in the duftite structure. This indicates a solid solution among conichalcite, CaCu(AsO4 )(OH), austinite, CaZn(AsO4)(OH) and duftite PbCu(AsO4)(OH), all of them belonging to the adelite group of arsenates. It was named after Mining Councilor G Duft, Director of the Otavi Mine and Railroad Company, Tsumeb, Namibia. The type locality is the Tsumeb Mine, Tsumeb, Otjikoto Region, Namibia.
Pseudomalachite is a phosphate of copper with hydroxyl, named from the Greek for "false" and "malachite", because of its similarity in appearance to the carbonate mineral malachite, Cu2(CO3)(OH)2. Both are green coloured secondary minerals found in oxidised zones of copper deposits, often associated with each other. Pseudomalachite is polymorphous with reichenbachite and ludjibaite. It was discovered in 1813. Prior to 1950 it was thought that dihydrite, lunnite, ehlite, tagilite and prasin were separate mineral species, but Berry analysed specimens labelled with these names from several museums, and found that they were in fact pseudomalachite. The old names are no longer recognised by the IMA.
Hureaulite is a manganese phosphate with the formula Mn2+5(PO3OH)2(PO4)2·4H2O. It was discovered in 1825 and named in 1826 for the type locality, Les Hureaux, Saint-Sylvestre, Haute-Vienne, Limousin, France. It is sometimes written as huréaulite, but the IMA does not recommend this for English language text.
Plumbogummite is a rare secondary lead phosphate mineral, belonging to the alunite supergroup of minerals, crandallite subgroup. Some other members of this subgroup are:
Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.
This list gives an overview of the classification of non-silicate minerals and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, not IMA approved minerals, not named minerals are mostly excluded. Mostly major groups only, or groupings used by New Dana Classification and Mindat.
Whiteite is a rare hydrated hydroxyphosphate mineral.
Maricite or marićite is a sodium iron phosphate mineral (NaFe2+PO4), that has two metal cations connected to a phosphate tetrahedron. It is structurally similar to the much more common mineral olivine. Maricite is brittle, usually colorless to gray, and has been found in nodules within shale beds often containing other minerals.
Penikisite was discovered by Alan Kulan and Gunar Penikis near Rapid Creek, Yukon Territory. The mineral is a member of the bjarebyite group along with kulanite, ideally BaFe2+2Al2(PO4)3(OH)3, and bjarebyite, ideally BaMn2+2Al2(PO4)3(OH)3. It is among several new minerals that have been discovered in the Rapid Creek and Big Fish areas of Yukon Territory. Kulanite is similar in many ways to penikisite in appearance and properties. The chemical formula for penikisite is Ba(Mg,Fe,Ca)Al2(PO4)2(OH)3. It has a hardness of about 4 and a density of 3.79 g/cm3. Penikisite is unique among the bjarebyite group in being monoclinic and has a biaxial optical class. It comes in shades of blue and green and, when rubbed on a streak plate, is pale green to white in color. Although penikisite and kulanite both range from blue to green, penikisite zones are easily distinguishable from kulanite zones in kulanite-penikisite crystals because they are lighter than the darker kulanite in color. Penikisite is a phosphate and is different from kulanite in that it is a magnesium-rich phosphate whereas kulanite is an iron-rich phosphate.
Collinsite is a mineral with chemical formula Ca
2(Mg,Fe2+
)(PO
4)
2•2H
2O. It was discovered in British Columbia, Canada, and formally described in 1927. It was named in honor of William Henry Collins (1878–1937), director of the Geological Survey of Canada. There are three varieties of the mineral: magnesian collinsite, zincian collinsite, and strontian collinsite. The crystal structure consists of polyhedral chains linked by weak hydrogen bonds.
Falsterite is a rare phosphate mineral with the formula Ca2MgMn2+2(Fe2+0.5Fe3+0.5)4Zn4(PO4)8(OH)4(H2O)14. It is a pegmatitic mineral, related to the currently approved mineral ferraioloite.
Fluorcarmoite-(BaNa) is a rare phosphate mineral, belonging to arrojadite group, with the formula Ba[]Na2Na2[]CaMg13Al(PO4)11(PO3OH)F2. It is a barium-rich member of the group, as is arrojadite-(BaNa), arrojadite-(BaFe), fluorarrojadite-(BaFe) and an unapproved species ferri-arrojadite-(BaNa). The "-(BaNa)" suffix informs about the dominance of the particular elements (here barium and sodium) at the corresponding structural sites.
Zigrasite is a phosphate mineral with the chemical formula of MgZr(PO4)2(H2O)4. Zigrasite was discovered and is only known to occur in the Dunton Quarry at Oxford County, Maine. Zigrasite was specifically found in the giant 1972 gem tourmaline-bearing pocket at the Dunton Quarry. Zigrasite is named after James Zigras who originally discovered and brought the mineral to attention.
Serrabrancaite is a mineral with the chemical formula MnPO4•H2O and which is named for the locality where it was found, the Alto Serra Branca Pegmatite. The Alto Serra Branca mine has been in operation since the 1940s. It is located in Paraiba, Brazil near a village named Pedra Lavrada. Tantalite is the main mineral mined here. Specimens of serrabrancaite are kept in the Mineralogical Collections of both the Bergakademie Freiberg, Germany and the Martin-Luther Universität Halle, Institut für Geologische Wissenschaften.
Cattiite is a phosphate mineral. The mineral was first found in a veins of dolomite carbonatites veins at the bottom of the Zhelezny (Iron) Mine in the Kovdor massif, Kola Peninsula, Russia. Cattiite was tentatively identified as Mg3(PO4)2·22H2O, which as a high hydrate magnesium orthophosphate. Later structural studies, revealed the existence of two polytypes named Mg3(PO4)2·22H2O-1A1 and Mg3(PO4)2·22H2O-1A2.
Rockbridgeite is an anhydrous phosphate mineral in the "Rockbridgeite" supergroup with the chemical formula Fe2+Fe3+4(PO4)3(OH)5. It was discovered at the since-shut-down Midvale Mine in Rockbridge County, Virginia, United States. The researcher who first identified it, Clifford Frondel, named it in 1949 for its region of discovery, Rockbridge County.
Media related to satterlyite at Wikimedia Commons