Scheinerman's conjecture

Last updated

In mathematics, Scheinerman's conjecture, now a theorem, states that every planar graph is the intersection graph of a set of line segments in the plane. This conjecture was formulated by E. R. Scheinerman in his Ph.D. thesis (1984), following earlier results that every planar graph could be represented as the intersection graph of a set of simple curves in the plane ( Ehrlich, Even & Tarjan 1976 ). It was proven by JeremieChalopinandDaniel Gonçalves ( 2009 ).

For instance, the graph G shown below to the left may be represented as the intersection graph of the set of segments shown below to the right. Here, vertices of G are represented by straight line segments and edges of G are represented by intersection points.

Intersect1.png   Intersect2.png

Scheinerman also conjectured that segments with only three directions would be sufficient to represent 3-colorable graphs, and West (1991) conjectured that analogously every planar graph could be represented using four directions. If a graph is represented with segments having only k directions and no two segments belong to the same line, then the graph can be colored using k colors, one color for each direction. Therefore, if every planar graph can be represented in this way with only four directions, then the four color theorem follows.

Hartman, Newman & Ziv (1991) and de Fraysseix, Ossona de Mendez & Pach (1991) proved that every bipartite planar graph can be represented as an intersection graph of horizontal and vertical line segments; for this result see also Czyzowicz, Kranakis & Urrutia (1998). De Castro et al. (2002) proved that every triangle-free planar graph can be represented as an intersection graph of line segments having only three directions; this result implies Grötzsch's theorem ( Grötzsch 1959 ) that triangle-free planar graphs can be colored with three colors. de Fraysseix & Ossona de Mendez (2005) proved that if a planar graph G can be 4-colored in such a way that no separating cycle uses all four colors, then G has a representation as an intersection graph of segments.

Chalopin, Gonçalves & Ochem (2007) proved that planar graphs are in 1-STRING, the class of intersection graphs of simple curves in the plane that intersect each other in at most one crossing point per pair. This class is intermediate between the intersection graphs of segments appearing in Scheinerman's conjecture and the intersection graphs of unrestricted simple curves from the result of Ehrlich et al. It can also be viewed as a generalization of the circle packing theorem, which shows the same result when curves are allowed to intersect in a tangent. The proof of the conjecture by Chalopin & Gonçalves (2009) was based on an improvement of this result.

Related Research Articles

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Geometric graph theory</span> Subfield of graph theory

Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs". Geometric graphs are also known as spatial networks.

<span class="mw-page-title-main">Book embedding</span> Graph layout on multiple half-planes

In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a book, a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the spine, and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness. Book embeddings have also been used to define several other graph invariants including the pagewidth and book crossing number.

In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by Klaus Wagner (1936), Fáry (1948), and Sherman K. Stein (1951).

<span class="mw-page-title-main">Intersection graph</span> Graph representing intersections between given sets

In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them.

In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures. Most of these methods operate in O(n) time (linear time), where n is the number of edges (or vertices) in the graph, which is asymptotically optimal. Rather than just being a single Boolean value, the output of a planarity testing algorithm may be a planar graph embedding, if the graph is planar, or an obstacle to planarity such as a Kuratowski subgraph if it is not.

In graph theory, a string graph is an intersection graph of curves in the plane; each curve is called a "string". Given a graph G, G is a string graph if and only if there exists a set of curves, or strings, such that the graph having a vertex for each curve and an edge for each intersecting pair of curves is isomorphic to G.

<span class="mw-page-title-main">Circle packing theorem</span> Describes the possible tangency relations between circles with disjoint interiors

The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:

<span class="mw-page-title-main">Crossing number (graph theory)</span> Fewest edge crossings in drawing of a graph

In graph theory, the crossing numbercr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.

<span class="mw-page-title-main">Grötzsch's theorem</span> Every triangle-free planar graph is 3-colorable

In the mathematical field of graph theory, Grötzsch's theorem is the statement that every triangle-free planar graph can be colored with only three colors. According to the four-color theorem, every graph that can be drawn in the plane without edge crossings can have its vertices colored using at most four different colors, so that the two endpoints of every edge have different colors, but according to Grötzsch's theorem only three colors are needed for planar graphs that do not contain three mutually adjacent vertices.

In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph.

<span class="mw-page-title-main">Topological graph</span>

In mathematics, a topological graph is a representation of a graph in the plane, where the vertices of the graph are represented by distinct points and the edges by Jordan arcs joining the corresponding pairs of points. The points representing the vertices of a graph and the arcs representing its edges are called the vertices and the edges of the topological graph. It is usually assumed that any two edges of a topological graph cross a finite number of times, no edge passes through a vertex different from its endpoints, and no two edges touch each other. A topological graph is also called a drawing of a graph.

In graph theory, a shallow minor or limited-depth minor is a restricted form of a graph minor in which the subgraphs that are contracted to form the minor have small diameter. Shallow minors were introduced by Plotkin, Rao & Smith (1994), who attributed their invention to Charles E. Leiserson and Sivan Toledo.

In graph drawing, a universal point set of order n is a set S of points in the Euclidean plane with the property that every n-vertex planar graph has a straight-line drawing in which the vertices are all placed at points of S.

Edward R. Scheinerman is an American mathematician, working in graph theory and order theory. He is a professor of applied mathematics, statistics, and computer science at Johns Hopkins University. His contributions to mathematics include Scheinerman's conjecture, now proven, stating that every planar graph may be represented as an intersection graph of line segments.

<span class="mw-page-title-main">Queue number</span> Invariant in graph theory

In the mathematical field of graph theory, the queue number of a graph is a graph invariant defined analogously to stack number using first-in first-out (queue) orderings in place of last-in first-out (stack) orderings.

In graph theory, a family of graphs is said to have bounded expansion if all of its shallow minors are sparse graphs. Many natural families of sparse graphs have bounded expansion. A closely related but stronger property, polynomial expansion, is equivalent to the existence of separator theorems for these families. Families with these properties have efficient algorithms for problems including the subgraph isomorphism problem and model checking for the first order theory of graphs.

<span class="mw-page-title-main">Patrice Ossona de Mendez</span> French mathematician

Patrice Ossona de Mendez is a French mathematician specializing in topological graph theory who works as a researcher at the Centre national de la recherche scientifique in Paris. He is editor-in-chief of the European Journal of Combinatorics, a position he has held since 2009.

In the mathematical area of graph theory, a contact graph or tangency graph is a graph whose vertices are represented by geometric objects, and whose edges correspond to two objects touching according to some specified notion. It is similar to the notion of an intersection graph but differs from it in restricting the ways that the underlying objects are allowed to intersect each other.

<span class="mw-page-title-main">Penny graph</span> Graph formed by touching unit circles

In geometric graph theory, a penny graph is a contact graph of unit circles. It is formed from a collection of unit circles that do not cross each other, by creating a vertex for each circle and an edge for every pair of tangent circles. The circles can be represented physically by pennies, arranged without overlapping on a flat surface, with a vertex for each penny and an edge for each two pennies that touch.

References