Schild's ladder

Last updated
Two rungs of Schild's ladder. The segments A1X1 and A2X2 are an approximation to first order of the parallel transport of A0X0 along the curve. Schild's ladder step 4.svg
Two rungs of Schild's ladder. The segments A1X1 and A2X2 are an approximation to first order of the parallel transport of A0X0 along the curve.

In the theory of general relativity, and differential geometry more generally, Schild's ladder is a first-order method for approximating parallel transport of a vector along a curve using only affinely parametrized geodesics. The method is named for Alfred Schild, who introduced the method during lectures at Princeton University.

Contents

Construction

The idea is to identify a tangent vector x at a point with a geodesic segment of unit length , and to construct an approximate parallelogram with approximately parallel sides and as an approximation of the Levi-Civita parallelogramoid; the new segment thus corresponds to an approximately parallel translated tangent vector at

A curve in M with a "vector" X0 at A0, identified here as a geodesic segment. Schild's ladder step 1.svg
A curve in M with a "vector" X0 at A0, identified here as a geodesic segment.
Select A1 on the original curve. The point P1 is the midpoint of the geodesic segment X0A1. Schild's ladder step 2.svg
Select A1 on the original curve. The point P1 is the midpoint of the geodesic segment X0A1.
The point X1 is obtained by following the geodesic A0P1 for twice its parameter length. Schild's ladder step 3.svg
The point X1 is obtained by following the geodesic A0P1 for twice its parameter length.

Formally, consider a curve γ through a point A0 in a Riemannian manifold M, and let x be a tangent vector at A0. Then x can be identified with a geodesic segment A0X0 via the exponential map. This geodesic σ satisfies

The steps of the Schild's ladder construction are:

Approximation

This is a discrete approximation of the continuous process of parallel transport. If the ambient space is flat, this is exactly parallel transport, and the steps define parallelograms, which agree with the Levi-Civita parallelogramoid.

In a curved space, the error is given by holonomy around the triangle which is equal to the integral of the curvature over the interior of the triangle, by the Ambrose-Singer theorem; this is a form of Green's theorem (integral around a curve related to integral over interior), and in the case of Levi-Civita connections on surfaces, of Gauss–Bonnet theorem.

Notes

  1. Schild's ladder requires not only geodesics but also relative distance along geodesics. Relative distance may be provided by affine parametrization of geodesics, from which the required midpoints may be determined.
  2. The parallel transport which is constructed by Schild's ladder is necessarily torsion-free.
  3. A Riemannian metric is not required to generate the geodesics. But if the geodesics are generated from a Riemannian metric, the parallel transport which is constructed in the limit by Schild's ladder is the same as the Levi-Civita connection because this connection is defined to be torsion-free.

Related Research Articles

Differential geometry Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.

In geometry, a geodesic is commonly a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line" to a more general setting.

Riemann curvature tensor Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measure the failure of second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In Riemannian or pseudo Riemannian geometry, the Levi-Civita connection is the unique connection on the tangent bundle of a manifold that preserves the (pseudo-)Riemannian metric and is torsion-free.

Exponential map (Riemannian geometry)

In Riemannian geometry, an exponential map is a map from a subset of a tangent space TpM of a Riemannian manifold M to M itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.

Parallel transport Construct in differential geometry

In geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.

In geometry, the notion of a connection makes precise the idea of transporting data along a curve or family of curves in a parallel and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

Affine connection Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Turns out that connections are the easiest way to define differentiation of the sections of vector bundles.

Holonomy Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In Riemannian geometry, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold there is a unique torsion-free metric connection, called the Levi-Civita connection of the given metric. Here a metric connection is a connection which preserves the metric tensor. More precisely:

Fundamental Theorem of Riemannian Geometry. Let be a Riemannian manifold. Then there is a unique connection ∇ which satisfies the following conditions:

Symmetric space A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

Mathematics of general relativity Mathematical structures and techniques used in the theory of general relativity

The mathematics of general relativity refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Torsion tensor (1,2)-tensor field associated to an affine connection; characterizes "twist" of geodesics; if nonzero, geodesics will be helices

In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

Differential geometry of surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

Levi-Civita parallelogramoid

In the mathematical field of differential geometry, the Levi-Civita parallelogramoid is a quadrilateral in a curved space whose construction generalizes that of a parallelogram in the Euclidean plane. It is named for its discoverer, Tullio Levi-Civita. Like a parallelogram, two opposite sides AA′ and BB′ of a parallelogramoid are parallel and the same length as each other, but the fourth side AB′ will not in general be parallel to or the same length as the side AB, although it will be straight.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

References