In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it. [1] [2]
The Schnirelmann density of a set of natural numbers A is defined as
where A(n) denotes the number of elements of A not exceeding n and inf is infimum. [3]
The Schnirelmann density is well-defined even if the limit of A(n)/n as n → ∞ fails to exist (see upper and lower asymptotic density).
By definition, 0 ≤A(n) ≤ n and n σA≤A(n) for all n, and therefore 0 ≤ σA≤ 1, and σA = 1 if and only if A = N. Furthermore,
The Schnirelmann density is sensitive to the first values of a set:
In particular,
and
Consequently, the Schnirelmann densities of the even numbers and the odd numbers, which one might expect to agree, are 0 and 1/2 respectively. Schnirelmann and Yuri Linnik exploited this sensitivity.
If we set , then Lagrange's four-square theorem can be restated as . (Here the symbol denotes the sumset of and .) It is clear that . In fact, we still have , and one might ask at what point the sumset attains Schnirelmann density 1 and how does it increase. It actually is the case that and one sees that sumsetting once again yields a more populous set, namely all of . Schnirelmann further succeeded in developing these ideas into the following theorems, aiming towards Additive Number Theory, and proving them to be a novel resource (if not greatly powerful) to attack important problems, such as Waring's problem and Goldbach's conjecture.
Theorem. Let and be subsets of . Then
Note that . Inductively, we have the following generalization.
Corollary. Let be a finite family of subsets of . Then
The theorem provides the first insights on how sumsets accumulate. It seems unfortunate that its conclusion stops short of showing being superadditive. Yet, Schnirelmann provided us with the following results, which sufficed for most of his purpose.
Theorem. Let and be subsets of . If , then
Theorem. (Schnirelmann) Let . If then there exists such that
A subset with the property that for a finite sum, is called an additive basis, and the least number of summands required is called the degree (sometimes order) of the basis. Thus, the last theorem states that any set with positive Schnirelmann density is an additive basis. In this terminology, the set of squares is an additive basis of degree 4. (About an open problem for additive bases, see Erdős–Turán conjecture on additive bases.)
Historically the theorems above were pointers to the following result, at one time known as the hypothesis. It was used by Edmund Landau and was finally proved by Henry Mann in 1942.
Theorem.( Mann 1942 ) Let and be subsets of . In case that , we still have
An analogue of this theorem for lower asymptotic density was obtained by Kneser. [4] At a later date, E. Artin and P. Scherk simplified the proof of Mann's theorem. [5]
Let and be natural numbers. Let . Define to be the number of non-negative integral solutions to the equation
and to be the number of non-negative integral solutions to the inequality
in the variables , respectively. Thus . We have
The volume of the -dimensional body defined by , is bounded by the volume of the hypercube of size , hence . The hard part is to show that this bound still works on the average, i.e.,
Lemma. (Linnik) For all there exists and a constant , depending only on , such that for all ,
for all
With this at hand, the following theorem can be elegantly proved.
Theorem. For all there exists for which .
We have thus established the general solution to Waring's Problem:
Corollary.( Hilbert 1909 ) For all there exists , depending only on , such that every positive integer can be expressed as the sum of at most many -th powers.
In 1930 Schnirelmann used these ideas in conjunction with the Brun sieve to prove Schnirelmann's theorem, [1] [2] that any natural number greater than 1 can be written as the sum of not more than C prime numbers, where C is an effectively computable constant: [6] Schnirelmann obtained C < 800000. [7] Schnirelmann's constant is the lowest number C with this property. [6]
Olivier Ramaré showed in ( Ramaré 1995 ) that Schnirelmann's constant is at most 7, [6] improving the earlier upper bound of 19 obtained by Hans Riesel and R. C. Vaughan.
Schnirelmann's constant is at least 3; Goldbach's conjecture implies that this is the constant's actual value. [6]
In 2013, Harald Helfgott proved Goldbach's weak conjecture for all odd numbers. Therefore, Schnirelmann's constant is at most 4. [8] [9] [10] [11]
Khintchin proved that the sequence of squares, though of zero Schnirelmann density, when added to a sequence of Schnirelmann density between 0 and 1, increases the density:
This was soon simplified and extended by Erdős, who showed, that if A is any sequence with Schnirelmann density α and B is an additive basis of order k then
and this was improved by Plünnecke to
Sequences with this property, of increasing density less than one by addition, were named essential components by Khintchin. Linnik showed that an essential component need not be an additive basis [14] as he constructed an essential component that has xo(1) elements less than x. More precisely, the sequence has
elements less than x for some c < 1. This was improved by E. Wirsing to
For a while, it remained an open problem how many elements an essential component must have. Finally, Ruzsa determined that for every ε > 0 there is an essential component which has at most c(log x)1+ε elements up to x, but there is no essential component which has c(log x)1+o(1) elements up to x. [15] [16]
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.
In mathematics, in particular functional analysis, the singular values of a compact operator acting between Hilbert spaces and , are the square roots of the eigenvalues of the self-adjoint operator .
In additive combinatorics, the sumset of two subsets and of an abelian group is defined to be the set of all sums of an element from with an element from . That is,
In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.
In mathematics, the Iwasawa decomposition of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix. It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.
In measure theory, an area of mathematics, Egorov's theorem establishes a condition for the uniform convergence of a pointwise convergent sequence of measurable functions. It is also named Severini–Egoroff theorem or Severini–Egorov theorem, after Carlo Severini, an Italian mathematician, and Dmitri Egorov, a Russian physicist and geometer, who published independent proofs respectively in 1910 and 1911.
In additive combinatorics a discipline within mathematics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.
In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.
In additive number theory and combinatorics, a restricted sumset has the form
In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent part. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects.
Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.
In the branch of mathematics known as additive combinatorics, Kneser's theorem can refer to one of several related theorems regarding the sizes of certain sumsets in abelian groups. These are named after Martin Kneser, who published them in 1953 and 1956. They may be regarded as extensions of the Cauchy–Davenport theorem, which also concerns sumsets in groups but is restricted to groups whose order is a prime number.
In mathematics, the Davenport constantD(G ) is an invariant of a group studied in additive combinatorics, quantifying the size of nonunique factorizations. Given a finite abelian group G, D(G ) is defined as the smallest number such that every sequence of elements of that length contains a non-empty subsequence adding up to 0. In symbols, this is
In the mathematical field of algebraic number theory, the concept of principalization refers to a situation when, given an extension of algebraic number fields, some ideal of the ring of integers of the smaller field isn't principal but its extension to the ring of integers of the larger field is. Its study has origins in the work of Ernst Kummer on ideal numbers from the 1840s, who in particular proved that for every algebraic number field there exists an extension number field such that all ideals of the ring of integers of the base field become principal when extended to the larger field. In 1897 David Hilbert conjectured that the maximal abelian unramified extension of the base field, which was later called the Hilbert class field of the given base field, is such an extension. This conjecture, now known as principal ideal theorem, was proved by Philipp Furtwängler in 1930 after it had been translated from number theory to group theory by Emil Artin in 1929, who made use of his general reciprocity law to establish the reformulation. Since this long desired proof was achieved by means of Artin transfers of non-abelian groups with derived length two, several investigators tried to exploit the theory of such groups further to obtain additional information on the principalization in intermediate fields between the base field and its Hilbert class field. The first contributions in this direction are due to Arnold Scholz and Olga Taussky in 1934, who coined the synonym capitulation for principalization. Another independent access to the principalization problem via Galois cohomology of unit groups is also due to Hilbert and goes back to the chapter on cyclic extensions of number fields of prime degree in his number report, which culminates in the famous Theorem 94.
In mathematics, specifically in spectral theory, an eigenvalue of a closed linear operator is called normal if the space admits a decomposition into a direct sum of a finite-dimensional generalized eigenspace and an invariant subspace where has a bounded inverse. The set of normal eigenvalues coincides with the discrete spectrum.
{{cite book}}
: External link in |publisher=
(help){{cite journal}}
: Cite journal requires |journal=
(help)