Scream (cipher)

Last updated

The Scream cipher is a word-based stream cipher developed by Shai Halevi, Don Coppersmith and Charanjit Jutla from IBM.

The cipher is designed as a software efficient stream cipher. The authors describe the goal of the cipher to be a more secure version of the SEAL cipher.

The general design of Scream is close to the design of SEAL with block cipher-like round functions. There are two versions of Scream. One of them, Scream-F, reuses the S-boxes from the Advanced Encryption Standard (AES) block cipher, while the other, Scream, internally generates new, key-dependent S-boxes as part of the initialization phase. The round function is also based on the AES-round function, but is narrower, 64 bits instead of 128 bits.

The cipher uses a 128-bit key and a 128-bit nonce. It is efficient in software, running at 4-5 cycles per byte on modern processors.

The cipher was presented at the Fast Software Encryption (FSE) conference in 2002.

Related Research Articles

<span class="mw-page-title-main">Advanced Encryption Standard</span> Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called blocks. Block ciphers are specified elementary components in the design of many cryptographic protocols and are widely used to encrypt large amounts of data, including in data exchange protocols. A block cipher uses blocks as an unvarying transformation.

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key.

In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

<span class="mw-page-title-main">CAST-128</span> Block cipher

In cryptography, CAST-128 is a symmetric-key block cipher used in a number of products, notably as the default cipher in some versions of GPG and PGP. It has also been approved for Government of Canada use by the Communications Security Establishment. The algorithm was created in 1996 by Carlisle Adams and Stafford Tavares using the CAST design procedure.

<span class="mw-page-title-main">Serpent (cipher)</span>

Serpent is a symmetric key block cipher that was a finalist in the Advanced Encryption Standard (AES) contest, where it was ranked second to Rijndael. Serpent was designed by Ross Anderson, Eli Biham, and Lars Knudsen.

In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.

<span class="mw-page-title-main">LOKI97</span> Block cipher

In cryptography, LOKI97 is a block cipher which was a candidate in the Advanced Encryption Standard competition. It is a member of the LOKI family of ciphers, with earlier instances being LOKI89 and LOKI91. LOKI97 was designed by Lawrie Brown, assisted by Jennifer Seberry and Josef Pieprzyk.

In cryptography, SHARK is a block cipher identified as one of the predecessors of Rijndael.

In cryptography, SAFER is the name of a family of block ciphers designed primarily by James Massey on behalf of Cylink Corporation. The early SAFER K and SAFER SK designs share the same encryption function, but differ in the number of rounds and the key schedule. More recent versions — SAFER+ and SAFER++ — were submitted as candidates to the AES process and the NESSIE project respectively. All of the algorithms in the SAFER family are unpatented and available for unrestricted use.

<span class="mw-page-title-main">DEAL</span> Block cipher

In cryptography, DEAL is a symmetric block cipher derived from the Data Encryption Standard (DES). Its design was presented Lars Knudsen at the SAC conference in 1997, and submitted as a proposal to the AES contest in 1998 by Richard Outerbridge.

In cryptography, MUGI is a pseudorandom number generator (PRNG) designed for use as a stream cipher. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003, however, has been dropped to "candidate" by CRYPTREC revision in 2013.

<span class="mw-page-title-main">VEST</span> Family of stream ciphers

VEST (Very Efficient Substitution Transposition) ciphers are a set of families of general-purpose hardware-dedicated ciphers that support single pass authenticated encryption and can operate as collision-resistant hash functions designed by Sean O'Neil, Benjamin Gittins and Howard Landman. VEST cannot be implemented efficiently in software.

In cryptography, Galois/Counter Mode (GCM) is a AEAD mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance. GCM throughput rates for state-of-the-art, high-speed communication channels can be achieved with inexpensive hardware resources. The operation is an authenticated encryption algorithm designed to provide both data authenticity (integrity) and confidentiality. GCM is defined for block ciphers with a block size of 128 bits. Galois Message Authentication Code (GMAC) is an authentication-only variant of the GCM which can form an incremental message authentication code. Both GCM and GMAC can accept initialization vectors of arbitrary length.

In cryptography, CRYPTON is a symmetric block cipher submitted as a candidate for the Advanced Encryption Standard (AES). It is very efficient in hardware implementations and was designed by Chae Hoon Lim of Future Systems Inc.

In cryptography, Mercy is a tweakable block cipher designed by Paul Crowley for disk encryption.

In cryptography, E2 is a symmetric block cipher which was created in 1998 by NTT and submitted to the AES competition.

The following outline is provided as an overview of and topical guide to cryptography:

<span class="mw-page-title-main">Twofish</span> Block cipher

In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish.

<span class="mw-page-title-main">Speck (cipher)</span> Family of block ciphers

Speck is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Speck has been optimized for performance in software implementations, while its sister algorithm, Simon, has been optimized for hardware implementations. Speck is an add–rotate–xor (ARX) cipher.

References