Within the environmental sciences, screening broadly refers to a set of analytical techniques used to monitor levels of potentially hazardous organic compounds in the environment, particularly in tandem with mass spectrometry techniques. [1] [2] [3] [4] Such screening techniques are typically classified as either targeted, where compounds of interest are chosen before the analysis begins, or non-targeted, where compounds of interest are chosen at a later stage of the analysis. These two techniques can be organized into at least three approaches: target screening, using reference standards that are analogous to the target compound; suspect screening, which uses a library of cataloged data such as exact mass, isotope patterns, and chromatographic retention times in lieu of reference standards; and non-target screening, using no pre-existing knowledge for comparison before analysis. [1] [2] [3] [5] As such, target screening is most useful when monitoring the presence of specific organic compounds—particularly for regulatory purposes—which requires higher selectivity and sensitivity. When the number of detected compounds and associated metabolites needs to be maximized for discovering new or emerging environmental trends or biomarkers for disease, a more non-targeted approach has traditionally been used. [4] [5] [6] [7] However, the rapid improvement of mass spectrometers into more high-resolution forms, with increased sensitivity, has made suspect and non-target screening more attractive, either as stand-alone approaches or in conjunction with more targeted methods. [1] [2] [5] [6] [8]
Mass spectrometry methods are generally used for analysis of environmental contaminant monitoring, particularly in aquatic environments (though they can be applied in non-aquatic environments, such as with screening pesticides on plant matter [9] ), paired with chromatography for separation. [2] [4] [10] For target screening, this means using gas chromatography–mass spectrometry (GC-MS) or liquid chromatography–mass spectrometry (LC-MS) methods "that use single reaction monitoring (SIM) or selected reaction monitoring (SRM) modes." [4] However, for suspect and non-target screening, these methods are inadequate due to recording only a limited number of compounds and insufficient useful information can be determined about unknown compounds, particularly given the dearth of LC-MS comparison libraries. [4] For those non-targeted screening approaches, high-resolution mass spectrometry and high mass accuracy chromatography techniques are required. Combinations of quadrupole, time-of-flight, ion trap, and orbitrap mass spectrometry analyzers have emerged, along with high-performance liquid chromatography (and ultra-high-performance liquid chromatography), to more rapidly and effectively tackle suspect and non-target screening. [2] [6] [4] [10]
Target screening or analysis is useful when looking for a short list of predetermined organic compounds in a sample, while ignoring other compounds that may be present. Reference standards that align with the predetermined compounds are available and used to compare attributes such as chromatographic retention time, fragmentation pattern, and isotopic pattern. [10] The workflow for target screening requires the optimization of sample extraction, sample clean-up, and instrumentation methods to those predetermined compounds in order to achieve "a specific and accurate measurement." [2] Most analytical results will be quantitative in nature, given the narrow focus of screening. [2] [3] As such, targeted approaches have traditionally been used in regulatory monitoring schemes. [11] The downside, however, is that many hazardous organic compounds are not covered by environmental monitoring regulation and thus not specifically targeted, [8] and the approach is not generally adept for rapid response approaches to providing early warning of contamination events. [11]
Suspect screening is useful when looking for one or more suspected compounds with known structures in a sample, but reference standards are unavailable or don't exist. In this case, user-built databases containing information such as mass accuracy, retention time, isotopic patterns, and other structure information for the suspected compounds are consulted, filtered, and compared against the results of high-resolution mass spectrometry analyses using SRM or full scans. [3] The structure of the suspected compounds are then elucidated based on that information, ideally confirmed with authentic reference standards. [2] [3] Compared to targeted screening, the initial work performed in suspect screening is largely qualitative, with more quantitative work to potentially follow in a more targeted approach. [10] Aside from being able to analyze for more compounds, an additional benefit of this approach is that retrospective analysis, even years later, is enabled without reanalyzing the sample. [4] [6] A downside to the suspect approach is the complexity involved, including not only with data analysis (e.g., using in silico fragmentation software [10] [8] [6] ) but also carefully developing suspect screening lists and choosing databases. [8]
Non-target screening is useful when needing to investigate the presences of all the organic compounds within a sample. In this case, since no information is known about the compounds contained in the sample, no reference standard can be used for comparison, at least initially, overall making non-target screening one of the most challenging approaches. Rather, a full automated scan with mass filtering, peak detection, and other characteristics is used to make initial compound detection. Then elemental composition of detected compounds is deduced using accurate mass of the ions. Database searches can be performed to get a lock on what the most plausible structures are given the elemental composition. [4] [10] Like suspect screening, the initial work performed in non-target screening is largely qualitative, with more quantitative work to potentially follow. Similar to suspect screening, the downside to a fully non-targeted approach is the data-intensive nature of the processes, requiring multivariate statistical models, and the wide variety of data processing workflows used by researchers further complicates evaluation of method performance of those data analysis processes. [6]
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.
High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc., which have been dissolved into liquid solutions.
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.
Electron ionization is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard ionization method, since it uses highly energetic electrons to produce ions. This leads to extensive fragmentation, which can be helpful for structure determination of unknown compounds. EI is the most useful for organic compounds which have a molecular weight below 600 amu. Also, several other thermally stable and volatile compounds in solid, liquid and gas states can be detected with the use of this technique when coupled with various separation methods.
Environmental chemistry is the scientific study of the chemical and biochemical phenomena that occur in natural places. It should not be confused with green chemistry, which seeks to reduce potential pollution at its source. It can be defined as the study of the sources, reactions, transport, effects, and fates of chemical species in the air, soil, and water environments; and the effect of human activity and biological activity on these. Environmental chemistry is an interdisciplinary science that includes atmospheric, aquatic and soil chemistry, as well as heavily relying on analytical chemistry and being related to environmental and other areas of science.
Gas chromatography–mass spectrometry (GC–MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC–MS include drug detection, fire investigation, environmental analysis, explosives investigation, food and flavor analysis, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC–MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.
Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprints that specific cellular processes leave behind", the study of their small-molecule metabolite profiles. The metabolome represents the complete set of metabolites in a biological cell, tissue, organ, or organism, which are the end products of cellular processes. Messenger RNA (mRNA), gene expression data, and proteomic analyses reveal the set of gene products being produced in the cell, data that represents one aspect of cellular function. Conversely, metabolic profiling can give an instantaneous snapshot of the physiology of that cell, and thus, metabolomics provides a direct "functional readout of the physiological state" of an organism. There are indeed quantifiable correlations between the metabolome and the other cellular ensembles, which can be used to predict metabolite abundances in biological samples from, for example mRNA abundances. One of the ultimate challenges of systems biology is to integrate metabolomics with all other -omics information to provide a better understanding of cellular biology.
The metabolome refers to the complete set of small-molecule chemicals found within a biological sample. The biological sample can be a cell, a cellular organelle, an organ, a tissue, a tissue extract, a biofluid or an entire organism. The small molecule chemicals found in a given metabolome may include both endogenous metabolites that are naturally produced by an organism as well as exogenous chemicals that are not naturally produced by an organism.
Forensic toxicology is a multidisciplinary field that combines the principles of toxicology with expertise in disciplines such as analytical chemistry, pharmacology and clinical chemistry to aid medical or legal investigation of death, poisoning, and drug use. The paramount focus for forensic toxicology is not the legal implications of the toxicological investigation or the methodologies employed, but rather the acquisition and accurate interpretation of results. Toxicological analyses can encompass a wide array of samples. In the course of an investigation, a forensic toxicologist must consider the context of an investigation, in particular any physical symptoms recorded, and any evidence collected at a crime scene that may narrow the search, such as pill bottles, powders, trace residue, and any available chemicals. Armed with this contextual information and samples to examine, the forensic toxicologist is tasked with identifying the specific toxic substances present, quantifying their concentrations, and assessing their likely impact on the individual involved.
Liquid chromatography–mass spectrometry (LC–MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography – MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify each separated component. MS is not only sensitive, but provides selective detection, relieving the need for complete chromatographic separation. LC–MS is also appropriate for metabolomics because of its good coverage of a wide range of chemicals. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC–MS may be applied in a wide range of sectors including biotechnology, environment monitoring, food processing, and pharmaceutical, agrochemical, and cosmetic industries. Since the early 2000s, LC–MS has also begun to be used in clinical applications.
Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites.
Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration, sample phase, and composition of the analyte solution. Quite possibly the most important consideration in sample preparation is knowing what phase the sample must be in for analysis to be successful. In some cases the analyte itself must be purified before entering the ion source. In other situations, the matrix, or everything in the solution surrounding the analyte, is the most important factor to consider and adjust. Often, sample preparation itself for mass spectrometry can be avoided by coupling mass spectrometry to a chromatography method, or some other form of separation before entering the mass spectrometer. In some cases, the analyte itself must be adjusted so that analysis is possible, such as in protein mass spectrometry, where usually the protein of interest is cleaved into peptides before analysis, either by in-gel digestion or by proteolysis in solution.
Two-dimensional chromatography is a type of chromatographic technique in which the injected sample is separated by passing through two different separation stages. Two different chromatographic columns are connected in sequence, and the effluent from the first system is transferred onto the second column. Typically the second column has a different separation mechanism, so that bands that are poorly resolved from the first column may be completely separated in the second column. Alternately, the two columns might run at different temperatures. During the second stage of separation the rate at which the separation occurs must be faster than the first stage, since there is still only a single detector. The plane surface is amenable to sequential development in two directions using two different solvents.
A triple quadrupole mass spectrometer (TQMS), is a tandem mass spectrometer consisting of two quadrupole mass analyzers in series, with a (non-mass-resolving) radio frequency (RF)–only quadrupole between them to act as a cell for collision-induced dissociation. This configuration is often abbreviated QqQ, here Q1q2Q3.
Instrumental analysis is a field of analytical chemistry that investigates analytes using scientific instruments.
Analytical thermal desorption, known within the analytical chemistry community simply as "thermal desorption" (TD), is a technique that concentrates volatile organic compounds (VOCs) in gas streams prior to injection into a gas chromatograph (GC). It can be used to lower the detection limits of GC methods, and can improve chromatographic performance by reducing peak widths.
Chemoproteomics entails a broad array of techniques used to identify and interrogate protein-small molecule interactions. Chemoproteomics complements phenotypic drug discovery, a paradigm that aims to discover lead compounds on the basis of alleviating a disease phenotype, as opposed to target-based drug discovery, in which lead compounds are designed to interact with predetermined disease-driving biological targets. As phenotypic drug discovery assays do not provide confirmation of a compound's mechanism of action, chemoproteomics provides valuable follow-up strategies to narrow down potential targets and eventually validate a molecule's mechanism of action. Chemoproteomics also attempts to address the inherent challenge of drug promiscuity in small molecule drug discovery by analyzing protein-small molecule interactions on a proteome-wide scale. A major goal of chemoproteomics is to characterize the interactome of drug candidates to gain insight into mechanisms of off-target toxicity and polypharmacology.
Laser diode thermal desorption (LDTD) is an ionization technique that is coupled to mass spectrometry to analyze samples with atmospheric pressure chemical ionization (APCI). It uses a laser to thermally desorb analytes that are deposited on a stainless steel sheet sample holder, called LazWell. The coupling of LDTD and APCI is considered to be a soft-ionization technique. With LDTD-APCI, it is possible to analyze samples in forensics, pharmaceuticals, environment, food and clinical studies. LDTD is suitable for small molecules between 0 and 1200 Da and some peptides such as cyclosporine.
SCIEX is a manufacturer of mass spectrometry instrumentation used in biomedical and environmental applications. Originally started by scientists from the University of Toronto Institute for Aerospace Studies, it is now part of Danaher Corporation with the SCIExe R&D division still located in Toronto, Canada.
Soft Ionization by Chemical Reaction in Transfer is a method for ionizing small organic compounds at ambient atmospheric pressure. It is used for ion generation in mass spectrometers (MS).