Seismic microzonation

Last updated
Seismic microzonation map of Greater Bangkok prepared based on predominant period of site obtained from microtremor observations Bangkok microzonation map.jpg
Seismic microzonation map of Greater Bangkok prepared based on predominant period of site obtained from microtremor observations

Seismic microzonation is defined as the process of subdividing a potential seismic or earthquake prone area into zones with respect to some geological and geophysical characteristics of the sites such as ground shaking, liquefaction susceptibility, landslide and rock fall hazard, earthquake-related flooding, so that seismic hazards at different locations within the area can correctly be identified. Microzonation provides the basis for site-specific risk analysis, which can assist in the mitigation of earthquake damage. [1] In most general terms, seismic microzonation is the process of estimating the response of soil layers under earthquake excitations and thus the variation of earthquake characteristics on the ground surface. [2]

Contents

Regional geology can have a large effect on the characteristics of ground motion. [3] The site response of the ground motion may vary in different locations of the city according to the local geology. A seismic zonation map for a whole country may, therefore, be inadequate for detailed seismic hazard assessment of the cities. This necessitates the development of microzonation maps for big cities for detailed seismic hazard analysis. [4] Microzonation maps can serve as a basis for evaluating site-specific risk analysis, which is essential for critical structures like nuclear power plants, subways, bridges, elevated highways, sky trains and dam sites. Seismic microzonation can be considered as the preliminary phase of earthquake risk mitigation studies. It requires multi-disciplinary contributions as well as comprehensive understanding of the effects of earthquake generated ground motions on man made structures. [5] Many large cities around the world have put effort into developing microzonation maps for the better understanding of earthquake hazard within the cities. [6]

Effect of site conditions on earthquake ground motion

In the 1985 Mexico City earthquake, structures built on soft soil sediment sustained severe damage MexCity85quake.jpg
In the 1985 Mexico City earthquake, structures built on soft soil sediment sustained severe damage

It has long been recognized that the intensity of ground shaking during earthquakes and the associated damage to structures are significantly influenced by local geologic and soil conditions. [3] Unconsolidated sediments are found to amplify ground motion during earthquakes and are hence more prone to earthquake damage than ground with hard strata. Modern cities built on soft sediments are especially vulnerable to damage caused by amplified ground motions.

The 1985 Mexico City earthquake of September 19, 1985 is a good example of earthquake damage to a modern city built on soft sediment. Though the earthquake epicenter was located around 350 km from the city, the sites with soft clay deposits exhibited a huge amplification of ground motion resulting in severe damage. Mexico City is built on a thick layer of soft soil over a hard stratum. The western part of the city is located on the edge of an old lakebed, whereas, soft clay deposits filling the former lakebed underline the eastern part. In the lake bed area, the soft clay deposits have shear wave velocities ranging from 40 to 90 m/s and the underlying hard strata has a shear wave velocity in the range 500 m/s or greater. During the earthquake of 1985, the seismic waves were trapped in the soft strata. The soft soil layer allowed the upward propagating shear waves to propagate easily; however, the hard strata at the bottom acted like a reflector and bounced back the downward propagating waves. This kind of trapping of waves created a resonance and consequently resulted in an enormous amplification of the ground motion. As a result, the lake bed area suffered catastrophic damage; however, in the southwest part of the city, ground motions were moderate and building damage was minor. The acceleration recorded in the hill-zones were relatively low-amplitude, short period ground motions compared to high amplitude and long period ground motions recorded at stations located in the lake zone. [7]

Clay deposits around the perimeter of Oakland area amplified the ground motion tremendously in the Loma Prieta earthquake in 1989 Cypress structure.jpeg
Clay deposits around the perimeter of Oakland area amplified the ground motion tremendously in the Loma Prieta earthquake in 1989

Similar kinds of site amplification of ground motion were observed in the Loma Prieta earthquake in October 1989. [8] Deep clay deposits underlying sites around the perimeter of the San Francisco Bay area amplified the ground motion tremendously in the San Francisco and Oakland area causing severe damage. The San Francisco-Oakland Bay Bridge, founded on a deep clay site, was extensively damaged in this earthquake.

The site amplification phenomenon observed during these earthquakes clearly highlighted the possibility of severe ground motions on sites with soft soil profiles located at large distance from causative faults and underscored the importance of site specific risk analysis.

Methods of seismic microzonation

Dynamic characteristics of site such as predominant period, amplification factor, shear wave velocity, standard penetration test values can be used for seismic microzonation purpose. Shear wave velocity measurement and standard penetration test are generally expensive and are not feasible to be carried out at large number of sites for the purpose of microzonation. Ambient Vibrations measurement (also called Microtremor) has become a popular method for determining the dynamic properties of soil strata and is being extensively used for microzonation. Microtremor observations are easy to perform, inexpensive and can be applied to places with low seismicity as well, hence, microtremor measurements can be used conveniently for microzonation.

Related Research Articles

<span class="mw-page-title-main">Earthquake</span> Sudden movement of the Earths crust

An earthquake is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time period. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume. The word tremor is also used for non-earthquake seismic rumbling.

The Modified Mercalli intensity scale, developed from Giuseppe Mercalli's Mercalli intensity scale of 1902, is a seismic intensity scale used for measuring the intensity of shaking produced by an earthquake. It measures the effects of an earthquake at a given location, distinguished from the earthquake's inherent force or strength as measured by seismic magnitude scales. While shaking is caused by the seismic energy released by an earthquake, earthquakes differ in how much of their energy is radiated as seismic waves. Deeper earthquakes also have less interaction with the surface, and their energy is spread out across a larger volume. Shaking intensity is localized, generally diminishing with distance from the earthquake's epicenter, but can be amplified in sedimentary basins and certain kinds of unconsolidated soils.

<span class="mw-page-title-main">Seismology</span> Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic, atmospheric, and artificial processes such as explosions. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time is called a seismogram. A seismologist is a scientist who does research in seismology.

<span class="mw-page-title-main">Fault (geology)</span> Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

<span class="mw-page-title-main">Seismic hazard</span> Probability that an earthquake will occur in a given geographic area, within a given window of time

A seismic hazard is the probability that an earthquake will occur in a given geographic area, within a given window of time, and with ground motion intensity exceeding a given threshold. With a hazard thus estimated, risk can be assessed and included in such areas as building codes for standard buildings, designing larger buildings and infrastructure projects, land use planning and determining insurance rates. The seismic hazard studies also may generate two standard measures of anticipated ground motion, both confusingly abbreviated MCE; the simpler probabilistic Maximum Considered Earthquake, used in standard building codes, and the more detailed and deterministic Maximum Credible Earthquake incorporated in the design of larger buildings and civil infrastructure like dams or bridges. It is important to clarify which MCE is being discussed.

A blind thrust earthquake occurs along a thrust fault that does not show signs on the Earth's surface, hence the designation "blind". Such faults, being invisible at the surface, have not been mapped by standard surface geological mapping. Sometimes they are discovered as a by-product of oil exploration seismology; in other cases their existence is not suspected.

<span class="mw-page-title-main">Soil liquefaction</span> Soil material that is ordinarily a solid behaves like a liquid

Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid. In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California. He described the mechanism of flow liquefaction of the embankment dam as:

If the pressure of the water in the pores is great enough to carry all the load, it will have the effect of holding the particles apart and of producing a condition that is practically equivalent to that of quicksand... the initial movement of some part of the material might result in accumulating pressure, first on one point, and then on another, successively, as the early points of concentration were liquefied.

Peak ground acceleration (PGA) is equal to the maximum ground acceleration that occurred during earthquake shaking at a location. PGA is equal to the amplitude of the largest absolute acceleration recorded on an accelerogram at a site during a particular earthquake. Earthquake shaking generally occurs in all three directions. Therefore, PGA is often split into the horizontal and vertical components. Horizontal PGAs are generally larger than those in the vertical direction but this is not always true, especially close to large earthquakes. PGA is an important parameter for earthquake engineering, The design basis earthquake ground motion (DBEGM) is often defined in terms of PGA.

<span class="mw-page-title-main">Strong ground motion</span> Type of earthquake

In seismology, strong ground motion is the strong earthquake shaking that occurs close to a causative fault. The strength of the shaking involved in strong ground motion usually overwhelms a seismometer, forcing the use of accelerographs for recording. The science of strong ground motion also deals with the variations of fault rupture, both in total displacement, energy released, and rupture velocity.

<span class="mw-page-title-main">Earthquake engineering</span> Interdisciplinary branch of engineering

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. Earthquake engineering is the scientific field concerned with protecting society, the natural environment, and the man-made environment from earthquakes by limiting the seismic risk to socio-economically acceptable levels. Traditionally, it has been narrowly defined as the study of the behavior of structures and geo-structures subject to seismic loading; it is considered as a subset of structural engineering, geotechnical engineering, mechanical engineering, chemical engineering, applied physics, etc. However, the tremendous costs experienced in recent earthquakes have led to an expansion of its scope to encompass disciplines from the wider field of civil engineering, mechanical engineering, nuclear engineering, and from the social sciences, especially sociology, political science, economics, and finance.

<span class="mw-page-title-main">Geotechnical investigation</span>

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

Mitigation of seismic motion is an important factor in earthquake engineering and construction in earthquake-prone areas. The destabilizing action of an earthquake on constructions may be direct or indirect.

Ground–structure interaction (SSI) consists of the interaction between soil (ground) and a structure built upon it. It is primarily an exchange of mutual stress, whereby the movement of the ground-structure system is influenced by both the type of ground and the type of structure. This is especially applicable to areas of seismic activity. Various combinations of soil and structure can either amplify or diminish movement and subsequent damage. A building on stiff ground rather than deformable ground will tend to suffer greater damage. A second interaction effect, tied to mechanical properties of soil, is the sinking of foundations, worsened by a seismic event. This phenomenon is called soil liquefaction.

Microtremor is a low amplitude ambient vibration of the ground caused by man-made or atmospheric disturbances. The term Ambient Vibrations is now preferred to talk about this phenomenon. Observation of microtremors can give useful information on dynamic properties of the site such as predominant period and amplitude. Microtremor observations are easy to perform, inexpensive and can be applied to places with low seismicity as well, hence, microtremor measurements can be used conveniently for seismic microzonation. More detailed information on the shear wave velocity profile of the site can be obtained from microtremor array observation.

Rayleigh waves are a type of surface acoustic wave that travel along the surface of solids. They can be produced in materials in many ways, such as by a localized impact or by piezo-electric transduction, and are frequently used in non-destructive testing for detecting defects. Rayleigh waves are part of the seismic waves that are produced on the Earth by earthquakes. When guided in layers they are referred to as Lamb waves, Rayleigh–Lamb waves, or generalized Rayleigh waves.

In geophysics, geology, civil engineering, and related disciplines, seismic noise is a generic name for a relatively persistent vibration of the ground, due to a multitude of causes, that is often a non-interpretable or unwanted component of signals recorded by seismometers.

In seismology, an earthquake rupture is the extent of slip that occurs during an earthquake in the Earth's crust. Earthquakes occur for many reasons that include: landslides, movement of magma in a volcano, the formation of a new fault, or, most commonly of all, a slip on an existing fault.

Seismic site effects are related to the amplification of seismic waves in superficial geological layers. The surface ground motion may be strongly amplified if the geological conditions are unfavorable. Therefore, the study of local site effects is an important part of the assessment of strong ground motions, seismic hazard and engineering seismology in general. Damage due to an earthquake may thus be aggravated as in the case of the 1985 Mexico City earthquake. For alluvial basins, we may shake a bowl of jelly to model the phenomenon at a small scale.

<span class="mw-page-title-main">Earthquake rotational loading</span>

Earthquake rotational loading indicates the excitation of structures due to the torsional and rocking components of seismic actions. Nathan M. Newmark was the first researcher who showed that this type of loading may result in unexpected failure of structures, and its influence should be considered in design codes. There are various phenomena that may lead to the earthquake rotational loading of structures, such as propagation of body wave, surface wave, special rotational wave, block rotation, topographic effect, and soil structure interaction.

Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.

References

  1. 1 2 Tuladhar, R., Yamazaki, F., Warnitchai, P & Saita, J., Seismic Microzonation of the Greater Bangkok area using Microtremor Observations, Earthquake Engineering and Structural Dynamics, v33, 2004: 211-225
  2. Finn, W.D.L. (1991) Geotechnical Engineering Aspects of Microzonation, Proc. 4th International Conference on Seismic Zonation, (1):199-259
  3. 1 2 Seed, H. B. and Schnabel, P. B., 1972. Soil and Geological Effects on Site Response During Earthquakes. Proc. of First International Conf. on Microzonation for Safer Construction – Research and Application, vol. I, pp 61-74
  4. Schell, B. A. et al., 1978. Seismotectonic Microzonation for Earthquake Risk Reduction. Proc. of Second International Conf. on Microzonation for Safer Construction – Research and Application, vol. I, pp 571-583
  5. Ansal, A.M. & Slejko, D. (2001) The Long and Winding Road from Earthquakes to Damage, Soil Dynamics and Earthquake Engineering, (21)5:369-375.
  6. Shima, E., 1978. Seismic Microzonation Map of Tokyo. Proc. of Second International Conf. on Microzonation for Safer Construction – Research and Application, vol. I, pp 433-443
  7. Seed, H. B., Romo, M. P., Sun, J. I., Jaime, A., and Lysmer, J., 1988. The Mexico earthquake of September 19, 1985-Relationships between soil conditions and earthquake ground motions. Earthquake Spectra, EERI, Vol. 4, No. 4, pp. 687-729
  8. Benuska, L., 1990. Loma Prieta Earthquake Reconnaissance Report. Earthquake Spectra, EERI, Supplement to vol. 6, May