Peak ground acceleration (PGA) is equal to the maximum ground acceleration that occurred during earthquake shaking at a location. PGA is equal to the amplitude of the largest absolute acceleration recorded on an accelerogram at a site during a particular earthquake. [1] Earthquake shaking generally occurs in all three directions. Therefore, PGA is often split into the horizontal and vertical components. Horizontal PGAs are generally larger than those in the vertical direction but this is not always true, especially close to large earthquakes. PGA is an important parameter (also known as an intensity measure) for earthquake engineering, The design basis earthquake ground motion (DBEGM) [2] is often defined in terms of PGA.
Unlike the Richter and moment magnitude scales, it is not a measure of the total energy (magnitude, or size) of an earthquake, but rather of how much the earth shakes at a given geographic point. The Mercalli intensity scale uses personal reports and observations to measure earthquake intensity but PGA is measured by instruments, such as accelerographs. It can be correlated to macroseismic intensities on the Mercalli scale [3] but these correlations are associated with large uncertainty. [4] [5]
The peak horizontal acceleration (PHA) is the most commonly used type of ground acceleration in engineering applications. It is often used within earthquake engineering (including seismic building codes) and it is commonly plotted on seismic hazard maps. [6] In an earthquake, damage to buildings and infrastructure is related more closely to ground motion, of which PGA is a measure, rather than the magnitude of the earthquake itself. For moderate earthquakes, PGA is a reasonably good determinant of damage; in severe earthquakes, damage is more often correlated with peak ground velocity. [3]
Earthquake energy is dispersed in waves from the hypocentre, causing ground movement omnidirectionally but typically modelled horizontally (in two directions) and vertically. PGA records the acceleration (rate of change of speed) of these movements, while peak ground velocity is the greatest speed (rate of movement) reached by the ground, and peak displacement is the distance moved. [7] [8] These values vary in different earthquakes, and in differing sites within one earthquake event, depending on a number of factors. These include the length of the fault, magnitude, the depth of the quake, the distance from the epicentre, the duration (length of the shake cycle), and the geology of the ground (subsurface). Shallow-focused earthquakes generate stronger shaking (acceleration) than intermediate and deep quakes, since the energy is released closer to the surface. [9]
Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s2 (1 g = 9.81 m/s2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s2 (1 g = 981 Gal).
The ground type can significantly influence ground acceleration, so PGA values can display extreme variability over distances of a few kilometers, particularly with moderate to large earthquakes. [10] The varying PGA results from an earthquake can be displayed on a shake map. [11] Due to the complex conditions affecting PGA, earthquakes of similar magnitude can offer disparate results, with many moderate magnitude earthquakes generating significantly larger PGA values than larger magnitude quakes.
During an earthquake, ground acceleration is measured in three directions: vertically (V or UD, for up-down) and two perpendicular horizontal directions (H1 and H2), often north–south (NS) and east–west (EW). The peak acceleration in each of these directions is recorded, with the highest individual value often reported. Alternatively, a combined value for a given station can be noted. The peak horizontal ground acceleration (PHA or PHGA) can be reached by selecting the higher individual recording, taking the mean of the two values, or calculating a vector sum of the two components. A three-component value can also be reached, by taking the vertical component into consideration also.
In seismic engineering, the effective peak acceleration (EPA, the maximum ground acceleration to which a building responds) is often used, which tends to be ⅔ –[ citation needed ]
Study of geographic areas combined with an assessment of historical earthquakes allows geologists to determine seismic risk and to create seismic hazard maps, which show the likely PGA values to be experienced in a region during an earthquake, with a probability of exceedance (PE). Seismic engineers and government planning departments use these values to determine the appropriate earthquake loading for buildings in each zone, with key identified structures (such as hospitals, bridges, power plants) needing to survive the maximum considered earthquake (MCE).
Damage to buildings is related to both peak ground velocity (PGV) and the duration of the earthquake – the longer high-level shaking persists, the greater the likelihood of damage.
Peak ground acceleration provides a measurement of instrumental intensity, that is, ground shaking recorded by seismic instruments. Other intensity scales measure felt intensity, based on eyewitness reports, felt shaking, and observed damage. There is correlation between these scales, but not always absolute agreement since experiences and damage can be affected by many other factors, including the quality of earthquake engineering.
Generally speaking,
The United States Geological Survey developed an Instrumental Intensity scale, which maps peak ground acceleration and peak ground velocity on an intensity scale similar to the felt Mercalli scale. These values are used to create shake maps by seismologists around the world. [3]
Instrumental Intensity | Acceleration (g) | Velocity (cm/s) | Perceived shaking | Potential damage |
---|---|---|---|---|
I | < 0.000464 | < 0.0215 | Not felt | None |
II–III | 0.000464 – 0.00297 | 0.135 – 1.41 | Weak | None |
IV | 0.00297 – 0.0276 | 1.41 – 4.65 | Light | None |
V | 0.0276 – 0.115 | 4.65 – 9.64 | Moderate | Very light |
VI | 0.115 – 0.215 | 9.64 – 20 | Strong | Light |
VII | 0.215 – 0.401 | 20 – 41.4 | Very strong | Moderate |
VIII | 0.401 – 0.747 | 41.4 – 85.8 | Severe | Moderate to heavy |
IX | 0.747 – 1.39 | 85.8 – 178 | Violent | Heavy |
X+ | > 1.39 | > 178 | Extreme | Very heavy |
In the 7-class Japan Meteorological Agency seismic intensity scale, the highest intensity, Shindo 7, covers accelerations greater than 4 m/s2 (0.41 g).
In India, areas with expected PGA values higher than 0.36 g are classed as "Zone 5", or "Very High Damage Risk Zone".
An earthquake – also called a quake, tremor, or temblor – is the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.
The Modified Mercalli intensity scale measures the effects of an earthquake at a given location. This is in contrast with the seismic magnitude usually reported for an earthquake.
A seismic hazard is the probability that an earthquake will occur in a given geographic area, within a given window of time, and with ground motion intensity exceeding a given threshold. With a hazard thus estimated, risk can be assessed and included in such areas as building codes for standard buildings, designing larger buildings and infrastructure projects, land use planning and determining insurance rates. The seismic hazard studies also may generate two standard measures of anticipated ground motion, both confusingly abbreviated MCE; the simpler probabilistic Maximum Considered Earthquake, used in standard building codes, and the more detailed and deterministic Maximum Credible Earthquake incorporated in the design of larger buildings and civil infrastructure like dams or bridges. It is important to clarify which MCE is being discussed.
The Japan Meteorological Agency (JMA) Seismic Intensity Scale is a seismic intensity scale used in Japan to categorize the intensity of local ground shaking caused by earthquakes.
Induced seismicity is typically earthquakes and tremors that are caused by human activity that alters the stresses and strains on Earth's crust. Most induced seismicity is of a low magnitude. A few sites regularly have larger quakes, such as The Geysers geothermal plant in California which averaged two M4 events and 15 M3 events every year from 2004 to 2009. The Human-Induced Earthquake Database (HiQuake) documents all reported cases of induced seismicity proposed on scientific grounds and is the most complete compilation of its kind.
An accelerograph can be referred to as a strong-motion instrument or seismograph, or simply an earthquake accelerometer. They are usually constructed as a self-contained box, which previously included a paper or film recorder but now they often record directly on digital media and then the data is transmitted via the Internet.
In seismology, strong ground motion is the strong earthquake shaking that occurs close to a causative fault. The strength of the shaking involved in strong ground motion usually overwhelms a seismometer, forcing the use of accelerographs for recording. The science of strong ground motion also deals with the variations of fault rupture, both in total displacement, energy released, and rupture velocity.
The 1987 Whittier Narrows earthquake occurred in the southern San Gabriel Valley and surrounding communities of Southern California, United States, at 7:42 a.m. PDT on October 1. The moderate magnitude 5.9 blind thrust earthquake was centered several miles north of Whittier in the town of Rosemead, had a relatively shallow depth, and was felt throughout southern California and southern Nevada. Many homes and businesses were affected, along with roadway disruptions, mainly in Los Angeles and Orange counties. Damage estimates ranged from $213–358 million, with 200 injuries, three directly-related deaths, and five additional fatalities that were associated with the event.
The Indian subcontinent has a history of devastating earthquakes. The major reason for the high frequency and intensity of the earthquakes is that the Indian plate is driving into Asia at a rate of approximately 47 mm/year. Geographical statistics of India show that almost 58% of the land is vulnerable to earthquakes. A World Bank and United Nations report shows estimates that around 200 million city dwellers in India will be exposed to storms and earthquakes by 2050. The latest version of seismic zoning map of India given in the earthquake resistant design code of India [IS 1893 2002] assigns four levels of seismicity for India in terms of zone factors. In other words, the earthquake zoning map of India divides India into 4 seismic zones unlike its previous version, which consisted of five or six zones for the country. According to the present zoning map, Zone 5 expects the highest level of seismicity whereas Zone 2 is associated with the lowest level of seismicity.
Seismic magnitude scales are used to describe the overall strength or "size" of an earthquake. These are distinguished from seismic intensity scales that categorize the intensity or severity of ground shaking (quaking) caused by an earthquake at a given location. Magnitudes are usually determined from measurements of an earthquake's seismic waves as recorded on a seismogram. Magnitude scales vary based on what aspect of the seismic waves are measured and how they are measured. Different magnitude scales are necessary because of differences in earthquakes, the information available, and the purposes for which the magnitudes are used.
The 1999 Athens earthquake occurred on September 7 at 14:56:51 local time near Mount Parnitha in Greece with a moment magnitude of 6.0 and a maximum Mercalli intensity of IX (Violent). The proximity to the Athens metropolitan area resulted in widespread structural damage, mainly to the nearby suburban towns of Ano Liosia, Acharnes, Fyli, Thrakomakedones, Kifissia, Metamorfosi, Kamatero and Nea Filadelfeia. More than 100 buildings across those areas collapsed trapping scores of victims under their rubble while dozens more were severely damaged. With damage estimated at $3–4.2 billion, 143 people were killed, and up to 1,600 were treated for injuries in Greece's deadliest natural disaster in almost half a century.
The 1965 Puget Sound earthquake occurred at 08:28 AM PDT on April 29 within the Puget Sound region of Washington state. It had a magnitude of 6.7 on the moment magnitude scale and a maximum perceived intensity of VIII (Severe) on the Mercalli intensity scale. It caused the deaths of seven people and about $12.5–28 million in damage. There were no recorded aftershocks.
The Arias intensity (IA) is a measure of the strength of a ground motion. It determines the intensity of shaking by measuring the acceleration of transient seismic waves. It has been found to be a fairly reliable parameter to describe earthquake shaking necessary to trigger landslides. It was proposed by Chilean engineer Arturo Arias in 1970.
Spectral acceleration (SA) is a unit measured in g that describes the maximum acceleration in an earthquake on an object – specifically a damped, harmonic oscillator moving in one physical dimension. This can be measured at different oscillation frequencies and with different degrees of damping, although 5% damping is commonly applied. The SA at different frequencies may be plotted to form a response spectrum.
Seismic site effects are related to the amplification of seismic waves in superficial geological layers. The surface ground motion may be strongly amplified if the geological conditions are unfavorable. Therefore, the study of local site effects is an important part of the assessment of strong ground motions, seismic hazard and engineering seismology in general. Damage due to an earthquake may thus be aggravated as in the case of the 1985 Mexico City earthquake. For alluvial basins, we may shake a bowl of jelly to model the phenomenon at a small scale.
The 2010 Damghan earthquake occurred in northern Iran at 11:53:49 local time on August 27 with a moment magnitude of 5.8 and maximum Mercalli intensity of VII. This strike-slip event damaged and destroyed a number of small villages in a sparsely populated region near the Alborz mountain range. It left four people dead, 40 injured, and about 800 without homes. The deaths and injuries in this moderate event were attributed to the low-quality construction styles that are typical of the area. The Iranian Strong Motion Network provided data by which seismologists determined the type and extent of the slip as well as the peak ground acceleration. Other large and destructive earthquakes have affected Semnan Province, including several events in 856 AD and 1953.
Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.
The Advanced National Seismic System (ANSS) is a collaboration of the U.S. Geological Survey (USGS) and regional, state, and academic partners that collects and analyzes data on significant earthquakes to provide near real-time information to emergency responders and officials, the news media, and the public. Such information is used to anticipate the likely severity and extent of damage, and to guide decisions on the responses needed.
The 1987 Superstition Hills and Elmore Ranch earthquakes were a pair of earthquakes measuring Mw 6.0 and 6.5 that rattled the Imperial Valley of California. The earthquakes caused damage in Southern California and Mexico, but was limited due to their location in a sparsely populated area. It was felt as far as Las Vegas and Phoenix. More than 90 were injured, and two people were killed in Mexico.
An earthquake struck near the Hawaiian island of Lanai on February 19, at 10:11 pm HST with an estimated magnitude of 7.5 on the moment magnitude scale (Mw ). It remains one of the largest seismic event to hit the Hawaiian Islands since the 1868 Kaʻū earthquake, with its effects being felt throughout the entire archipelago. It caused severe damage on the islands of Lanai, Molokai and Maui. A tsunami may have been generated however there are speculations if it had actually happened. Despite the size of the quake and the extent of damage, there were no deaths.