In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.
The simplest case is when Γ is cocompact, when the representation breaks up into discrete summands. Here the trace formula is an extension of the Frobenius formula for the character of an induced representation of finite groups. When Γ is the cocompact subgroup Z of the real numbers G = R, the Selberg trace formula is essentially the Poisson summation formula.
The case when Γ\G is not compact is harder, because there is a continuous spectrum, described using Eisenstein series. Selberg worked out the non-compact case when G is the group SL(2, R); the extension to higher rank groups is the Arthur–Selberg trace formula.
When Γ is the fundamental group of a Riemann surface, the Selberg trace formula describes the spectrum of differential operators such as the Laplacian in terms of geometric data involving the lengths of geodesics on the Riemann surface. In this case the Selberg trace formula is formally similar to the explicit formulas relating the zeros of the Riemann zeta function to prime numbers, with the zeta zeros corresponding to eigenvalues of the Laplacian, and the primes corresponding to geodesics. Motivated by the analogy, Selberg introduced the Selberg zeta function of a Riemann surface, whose analytic properties are encoded by the Selberg trace formula.
Cases of particular interest include those for which the space is a compact Riemann surface S. The initial publication in 1956 of Atle Selberg dealt with this case, its Laplacian differential operator and its powers. The traces of powers of a Laplacian can be used to define the Selberg zeta function. The interest of this case was the analogy between the formula obtained, and the explicit formulae of prime number theory. Here the closed geodesics on S play the role of prime numbers.
At the same time, interest in the traces of Hecke operators was linked to the Eichler–Selberg trace formula, of Selberg and Martin Eichler, for a Hecke operator acting on a vector space of cusp forms of a given weight, for a given congruence subgroup of the modular group. Here the trace of the identity operator is the dimension of the vector space, i.e. the dimension of the space of modular forms of a given type: a quantity traditionally calculated by means of the Riemann–Roch theorem.
The trace formula has applications to arithmetic geometry and number theory. For instance, using the trace theorem, Eichler and Shimura calculated the Hasse–Weil L-functions associated to modular curves; Goro Shimura's methods by-passed the analysis involved in the trace formula. The development of parabolic cohomology (from Eichler cohomology) provided a purely algebraic setting based on group cohomology, taking account of the cusps characteristic of non-compact Riemann surfaces and modular curves.
The trace formula also has purely differential-geometric applications. For instance, by a result of Buser, the length spectrum of a Riemann surface is an isospectral invariant, essentially by the trace formula.
A compact hyperbolic surface X can be written as the space of orbits where Γ is a subgroup of PSL(2, R), and H is the upper half plane, and Γ acts on H by linear fractional transformations.
The Selberg trace formula for this case is easier than the general case because the surface is compact so there is no continuous spectrum, and the group Γ has no parabolic or elliptic elements (other than the identity).
Then the spectrum for the Laplace–Beltrami operator on X is discrete and real, since the Laplace operator is self adjoint with compact resolvent; that is where the eigenvalues μn correspond to Γ-invariant eigenfunctions u in C∞(H) of the Laplacian; in other words
Using the variable substitution the eigenvalues are labeled
Then the Selberg trace formula is given by
The right hand side is a sum over conjugacy classes of the group Γ, with the first term corresponding to the identity element and the remaining terms forming a sum over the other conjugacy classes {T } (which are all hyperbolic in this case). The function h has to satisfy the following:
The function g is the Fourier transform of h, that is,
Let G be a unimodular locally compact group, and a discrete cocompact subgroup of G and a compactly supported continuous function on G. The trace formula in this setting is the following equality: where is the set of conjugacy classes in , is the unitary dual of G and:
The left-hand side of the formula is called the geometric side and the right-hand side the spectral side. The terms are orbital integrals.
Define the following operator on compactly supported functions on : It extends continuously to and for we have: after a change of variables. Assuming is compact, the operator is trace-class and the trace formula is the result of computing its trace in two ways as explained below. [1]
The trace of can be expressed as the integral of the kernel along the diagonal, that is: Let denote a collection of representatives of conjugacy classes in , and and the respective centralizers of . Then the above integral can, after manipulation, be written This gives the geometric side of the trace formula.
The spectral side of the trace formula comes from computing the trace of using the decomposition of the regular representation of into its irreducible components. Thus where is the set of irreducible unitary representations of (recall that the positive integer is the multiplicity of in the unitary representation on ).
When is a semisimple Lie group with a maximal compact subgroup and is the associated symmetric space the conjugacy classes in can be described in geometric terms using the compact Riemannian manifold (more generally orbifold) . The orbital integrals and the traces in irreducible summands can then be computed further and in particular one can recover the case of the trace formula for hyperbolic surfaces in this way.
The general theory of Eisenstein series was largely motivated by the requirement to separate out the continuous spectrum, which is characteristic of the non-compact case. [2]
The trace formula is often given for algebraic groups over the adeles rather than for Lie groups, because this makes the corresponding discrete subgroup Γ into an algebraic group over a field which is technically easier to work with. The case of SL2(C) is discussed in Gel'fand, Graev & Pyatetskii-Shapiro (1990) and Elstrodt, Grunewald & Mennicke (1998). Gel'fand et al also treat SL2(F) where F is a locally compact topological field with ultrametric norm, so a finite extension of the p-adic numbers Qp or of the formal Laurent series Fq((T)); they also handle the adelic case in characteristic 0, combining all completions R and Qp of the rational numbers Q.
Contemporary successors of the theory are the Arthur–Selberg trace formula applying to the case of general semisimple G, and the many studies of the trace formula in the Langlands philosophy (dealing with technical issues such as endoscopy). The Selberg trace formula can be derived from the Arthur–Selberg trace formula with some effort.
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.
In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese,, building upon earlier work by Laurent Schwartz, Grothendieck and others.
In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.
In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.
The Selberg zeta-function was introduced by Atle Selberg. It is analogous to the famous Riemann zeta function
The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.
In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.
In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).
Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.
In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.
In mathematics, the Arthur–Selberg trace formula is a generalization of the Selberg trace formula from the group SL2 to arbitrary reductive groups over global fields, developed by James Arthur in a long series of papers from 1974 to 2003. It describes the character of the representation of G(A) on the discrete part L2
0(G(F)\G(A)) of L2(G(F)\G(A)) in terms of geometric data, where G is a reductive algebraic group defined over a global field F and A is the ring of adeles of F.
In mathematics, the Riemann–Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function, an approximation of the zeta function by a sum of two finite Dirichlet series. It was found by Siegel (1932) in unpublished manuscripts of Bernhard Riemann dating from the 1850s. Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably. When used along the critical line, it is often useful to use it in a form where it becomes a formula for the Z function.
In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.
Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.