Self-sealing suction cup

Last updated

The self-sealing suction cup is a suction cup that exerts a suction force only when it is in physical contact with an object. Unlike most other suction cups, it does not exert any suction force when it is not in contact with an object. [1] Its grasping ability is achieved entirely through passive means without the use of sensors, valves, or actuators. [2]

Contents

It was designed so that, when used as part of a suction cup array, the suction cups that don't come in contact with the object remain sealed. By having only the suction cups that are in direct contact of the object exhibit suction force, the researchers were able to minimize leak points where air could enter and increase the pressure that each active cup receives, maximizing the suction force. [3] As a result, an array of self-sealing suction cups can grasp and pick up a wide range of object sizes and shapes. This comes in contrast to conventional suction cups that are typically designed for one specific object size and geometry. [1] In addition, suction cups of various sizes have been manufactured, ranging from the palm of a hand to the point of a fingertip. [4]

The self-sealing suction cup was first developed in 2010 by a collaboration of researchers from the U.S. Army Research Laboratory (ARL), the Edgewood Chemical Biological Center at Aberdeen Proving Ground, and the University of Maryland. [1] [3]

Design

The design of the self-sealing suction cup was initially inspired by the suckers of the octopus and its ability to pick up different sized items by individually actuating its suction cups based on the item's size and physical features. [5]

The internal geometry of the self-sealing suction cup was designed to the smallest possible size and features a minimum wall thickness of 1.02 mm, a tube diameter of 1.59 mm, and minimum part spacing of 0.13 mm. The suction cup incorporates a mix of rubber and plastic components, where the cup lip, base, tube, springs, and plug are made out of soft rubber while the cup side, collar, hinges, and flange are made out of plastic. As part of its design, a central vacuum pump can be used to maximize the suction force of the suction cup. [1] A multi-material 3D printer was used to create the prototype of the self-sealing suction cup in about 20 minutes. [5]

Inside the self-sealing suction cup, the plug is positioned close to the tube opening so that it can get sucked into the tube seal the hole when the central suction line is powered. A pair of springs connected to the suction cup's base helps maintain the plug's position, restoring the plug seal in the absence of object forces. [1] [2] If the cup makes contact with an object, a hinge action raises the plug away from the suction tube. The moment the cup's lips are pushed against the object, the passive reaction forces from the cup lips are transferred to the rubber base of the cup, which stretches over the collar and allow the structure to compress. Acting as a pivot for the hinges, the collar causes the hinges to rotate and the edges of the hinges slide along the underside of the flange and raise the plug away from the suction tube opening. As a result, the suction cup self-seals when not in contact with an object and self-opens the cup's lips makes contacts with an object. [1]

In 2015, several improvements were made to the design of the self-sealing suction cup to improve its grasping capabilities. The previous design demonstrated the following flaws: [6]

  1. The design required a high overall cup height, which increased the bulk of the device.
  2. The design was relatively fragile with respect to hyper-extension as well as torsional and shear forces.
  3. The internal geometry made it difficult to remove the support material inside, varying the quality of the seal.

To address these flaws, researchers from ARL decreased the number of components by consolidating the functions of several parts, which reduced the uncompressed height of the suction cup by almost 50% to 0.72 cm. The cup diameter was also reduced to 1.07 cm. A lever system was added to the base of the cup, which pivots the collar to lift the plug. In addition, the tube doubles as a spring, which helps restore the levers and the plug to their closed position. A plastic restraint was added around the cup to aid with handling the hyper-extension, shear, and torsional forces. [6]

Performance

The self-sealing suction cup has been subjected to a series of tests to determine the quality of its performance. A flexible test rig with four dime-sized suction cups and plastic ribs connected with rubber tubes was created for force-displacement and testing. [1]

A force-displacement test that compared the performance between the self-sealing suction cup, an identical suction cup, and a commercially available suction cup found that the internal structures of the self-sealing cup allowed more force to be exerted for the same displacement compared to the other cups. However, under identical conditions, the self-sealing cup achieved a maximum force of 12.5 N while the commercially available cup achieved a maximum force of 12.9 N. [2]

A seal quality test measured the pressure generated from each self-sealing suction cup. The results showed that an array of four cups maintained a pressure of 93.8% atmospheric. The test also demonstrated that not all the cups were equally efficient at sealing after object contact. However, this could be the result of variation in the cups’ prior usage. [2]

During object grasping testing where the grasping range was examined, the test rig successfully grasped about 80% of the objects attempted. These items consisted of the following: TV remote, pill bottle, glue stick, eyeglasses, fork, disposable bottle, toothpaste, coffee mug, bowl, plate, book, cell phone, bar of soap, paper money, mail, keys, show, table knife, medicine box, credit card, coin, pillow, hairbrush, non-disposable bottle, wallet, magazine, soda can, newspaper, scissors, wrist watch, purse, lighter, compact disc, telephone receiver, full wine bottle, full wine glass, light bulb, lock, padded volleyball, wooden block. As a demonstration of the cups’ strength, the ARL researchers were able to pick up a full bottle of wine using only four of the dime-sized suction cups. [4]

Use in robotics

The self-sealing suction cups have been incorporated in robots to improve their passive grasping capabilities. Due to the design of the suction cups, a central vacuum source can be used to effectively generate suction force from the cups and reduce the number of actuators and sensors for the robot. [7]

Researchers from ARL designed and developed a three-finger hand actuator system using a 3D printer in order for the robot to properly utilize the self-sealing suction cups. Four suction cups run along the bottom of each finger, which contains a narrow vacuum channel running through the center. A central vacuum pump serves to power the suction cups and facilitate grasping. The fingers can also curl around the object to better grasp it and release any object in its hold by feeding back the output of the vacuum pump and emitting a burst of positive pressure. [7]

The three-finger hand has been used by aerial systems and has demonstrated considerable success in grasping objects on the ground while maintaining flight. According to ARL researchers, the self-sealing suction cups may exhibit higher rates of success underwater due to the extra pressure from the sea depths surrounding and pressing against the object and grasper. [5] However, they noted that an underwater environment would require different manufacturing materials that would allow the suction cups to perform well in salt water, such as a thermal plastic. [3]

Related Research Articles

<span class="mw-page-title-main">Prosthesis</span> Artificial device that replaces a missing body part

In medicine, a prosthesis, or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trauma, disease, or a condition present at birth. Prostheses are intended to restore the normal functions of the missing body part. Amputee rehabilitation is primarily coordinated by a physiatrist as part of an inter-disciplinary team consisting of physiatrists, prosthetists, nurses, physical therapists, and occupational therapists. Prostheses can be created by hand or with computer-aided design (CAD), a software interface that helps creators design and analyze the creation with computer-generated 2-D and 3-D graphics as well as analysis and optimization tools.

<span class="mw-page-title-main">Reed switch</span> Electrical switch operated by an applied magnetic field

The reed switch is an electromechanical switch operated by an applied magnetic field. It was invented in 1922 by professor Valentin Kovalenkov at the Petrograd Electrotechnical University, and later evolved at Bell Telephone Laboratories in 1936 by Walter B. Ellwood into the reed relay. In its simplest and most common form, it consists of a pair of ferromagnetic flexible metal contacts in a hermetically sealed glass envelope. The contacts are usually normally open, closing when a magnetic field is present, or they may be normally closed and open when a magnetic field is applied. The switch may be actuated by an electromagnetic coil, making a reed relay, or by bringing a permanent magnet near it. When the magnetic field is removed, the contacts in the reed switch return to their original position. The "reed" is the metal part inside the reed switch envelope that is relatively thin and wide to make it flexible, resembling the reed of a musical instrument. The term "reed" may also include the external wire lead as well as the internal part.

<span class="mw-page-title-main">Siphon</span> Device involving the flow of liquids through tubes

A siphon is any of a wide variety of devices that involve the flow of liquids through tubes. In a narrower sense, the word refers particularly to a tube in an inverted "U" shape, which causes a liquid to flow upward, above the surface of a reservoir, with no pump, but powered by the fall of the liquid as it flows down the tube under the pull of gravity, then discharging at a level lower than the surface of the reservoir from which it came.

<span class="mw-page-title-main">Closure (container)</span> Devices and techniques used to close or seal a bottle, jug, jar, tube, can, etc.

A closure is a device used to close or seal a container such as a bottle, jug, jar, tube, or can. A closure may be a cap, cover, lid, plug, liner, or the like. The part of the container to which the closure is applied is called the finish.

Domo is an experimental robot made by the Massachusetts Institute of Technology designed to interact with humans. The brainchild of Jeff Weber and Aaron Edsinger, cofounders of Meka Robotics, its name comes from the Japanese phrase for "thank you very much", domo arigato, as well as the Styx song, "Mr. Roboto". The Domo project was originally funded by NASA, and has now been joined by Toyota in funding robot's development.

<span class="mw-page-title-main">Heat sealer</span> Machine for joining thermoplastic materials using heat

A heat sealer is a machine used to seal products, packaging, and other thermoplastic materials using heat. This can be with uniform thermoplastic monolayers or with materials having several layers, at least one being thermoplastic. Heat sealing can join two similar materials together or can join dissimilar materials, one of which has a thermoplastic layer.

<span class="mw-page-title-main">Solenoid valve</span> Electromechanical valve

A solenoid valve is an electromechanically operated valve.

<span class="mw-page-title-main">Synthetic setae</span> Artificial dry adhesives

Synthetic setae emulate the setae found on the toes of a gecko and scientific research in this area is driven towards the development of dry adhesives. Geckos have no difficulty mastering vertical walls and are apparently capable of adhering themselves to just about any surface. The five-toed feet of a gecko are covered with elastic hairs called setae and the ends of these hairs are split into nanoscale structures called spatulae. The sheer abundance and proximity to the surface of these spatulae make it sufficient for van der Waals forces alone to provide the required adhesive strength. Following the discovery of the gecko's adhesion mechanism in 2002, which is based on van der Waals forces, biomimetic adhesives have become the topic of a major research effort. These developments are poised to yield families of novel adhesive materials with superior properties which are likely to find uses in industries ranging from defense and nanotechnology to healthcare and sport.

<span class="mw-page-title-main">Suction cup</span> Device used to adhere to nonporous surfaces

A suction cup, also known as a sucker, is a device or object that uses the negative fluid pressure of air or water to adhere to nonporous surfaces, creating a partial vacuum.

Vibration isolation is the prevention of transmission of vibration from one component of a system to others parts of the same system, as in buildings or mechanical systems. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to prevent the transfer of vibration to such systems. Vibrations propagate via mechanical waves and certain mechanical linkages conduct vibrations more efficiently than others. Passive vibration isolation makes use of materials and mechanical linkages that absorb and damp these mechanical waves. Active vibration isolation involves sensors and actuators that produce disruptive interference that cancels-out incoming vibration.

<span class="mw-page-title-main">Drain (surgery)</span> Tube used to remove pus, blood or other fluids from a wound

A surgical drain is a tube used to remove pus, blood or other fluids from a wound, body cavity, or organ. They are commonly placed by surgeons or interventional radiologists after procedures or some types of injuries, but they can also be used as an intervention for decompression. There are several types of drains, and selection of which to use often depends on the placement site and how long the drain is needed.

iCub Open source robotics humanoid robot testbed

iCub is a one metre tall open source robotics humanoid robot testbed for research into human cognition and artificial intelligence.

Tube tools are tools used to service any tubing (material) in industrial applications including, but not limited to: HVAC or industrial heating and air, OEM's(Original equipment manufacturer), defense contractors, the automotive industry, process industries, aluminum smelting facilities, food and sugar production plants, oil refineries, and power plants.

<span class="mw-page-title-main">Robotics</span> Design, construction, use, and application of robots

Robotics is an interdisciplinary field that involves the design, construction, operation, and use of robots.

An end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot.

In robot combat, a self-righting mechanism or srimech is a device used to re-right a robot should it get flipped. Biohazard of BattleBots was the first robot to self-right.

High-density solids pumps are hydrostatically operating machines which displace the medium being pumped and thus create a flow.

<span class="mw-page-title-main">Altius Space Machines</span> American aerospace company

Altius Space Machines is a subsidiary company of Voyager Space Holdings, based in Broomfield, CO dedicated to engineering the future in Aerospace.

Nano-suction is a technology that uses vacuum, negative fluid pressure and millions of nano-sized suction cups to securely adhere any object to a flat non-porous surface. When the nano-suction object is pressed against a flat surface, millions of miniature suction cups create a large vacuum, generating a strong suction force that can hold a tremendous amount of weight. The nature of the technology allows easy removal without residue, and makes it reusable.

Microsuction tape is a material for sticking objects to surfaces such as furniture, dashboards, walls, etc. One side is usually attached to the base surface by a classical adhesive. Objects are attached to the other side by pressing them against the tape. They stick to the tape due to small bubbles (cavities) on the surface of the tape. These contain air, which is squeezed out when the surface of an object is pressed against the surface of the tape. Due to sealing properties of the material, when the object is pulled off the surface, a vacuum is created in the cavities. Due to external air pressure, this creates a force that prevents the object from being removed from the surface, a mechanism similar to that of a suction cup.

References

  1. 1 2 3 4 5 6 7 Kessens, Chad; Desai, Jaydev (May 2010). "Design, fabrication, and implementation of self-sealing suction cup arrays for grasping". 2010 IEEE International Conference on Robotics and Automation. pp. 765–770. doi:10.1109/ROBOT.2010.5509818. ISBN   978-1-4244-5038-1. S2CID   15529423.
  2. 1 2 3 4 Kessens, Chad; Desai, Jaydev (November 2011). "A Self-Sealing Suction Cup Array for Grasping". Journal of Mechanisms and Robotics. 3 (4): 045001. doi:10.1115/1.4004893 via ResearchGate.
  3. 1 2 3 Harmon, Katherine (February 21, 2013). "3-D Printed Octopus Suckers Help Robots Stick". Scientific American. Retrieved August 20, 2018.
  4. 1 2 Montalbano, Elizabeth (March 25, 2013). "Army Uses 3D-Printed Tentacles to Help Robots Manipulate Objects". Design News. Retrieved August 20, 2018.
  5. 1 2 3 "ECBC, ARL collaborate on octopus-inspired suction cup". Army Research Laboratory. February 12, 2013. Retrieved August 20, 2018.
  6. 1 2 Kessens, Chad; Desai, Jaydev (November 21, 2015). Compact Hand with Passive Grasping. pp. 117–126. ISBN   9783319237787.{{cite book}}: |journal= ignored (help)
  7. 1 2 Kessens, Chad (February 12, 2016). "Versatile Passive Grasping for Manipulation". IEEE/ASME Transactions on Mechatronics. 21 (3): 1293–1302. doi:10.1109/TMECH.2016.2520306. S2CID   8038086.