Sucker (zoology)

Last updated
Scolex of Taenia solium with four suckers and two rows of hooks Taenia solium tapeworm scolex with its four suckers and two rows of hooks 5262 lores.jpg
Scolex of Taenia solium with four suckers and two rows of hooks

A sucker in zoology refers to specialised attachment organ of an animal. It acts as an adhesion device in parasitic worms, several flatworms, cephalopods, certain fishes, amphibians, and bats. It is a muscular structure for suction on a host or substrate. In parasitic annelids, flatworms and roundworms, suckers are the organs of attachment to the host tissues. In tapeworms and flukes, they are a parasitic adaptation for attachment on the internal tissues of the host, such as intestines and blood vessels. [1] In roundworms and flatworms they serve as attachment between individuals particularly during mating. In annelids, a sucker can be both a functional mouth and a locomotory organ. [2] The structure and number of suckers are often used as basic taxonomic diagnosis between different species, since they are unique in each species. In tapeworms there are two distinct classes of suckers, namely "bothridia" for true suckers, and "bothria" for false suckers. In digeneal flukes there are usually an oral sucker at the mouth and a ventral sucker (or acetabulum) posterior to the mouth. Roundworms have their sucker just in front of the anus; hence it is often called a pre-anal sucker.

Zoology is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. The term is derived from Ancient Greek ζῷον, zōion, i.e. "animal" and λόγος, logos, i.e. "knowledge, study".

Parasitic worm A commonly used term to describe certain parasitic worms with some similarities, many of which are intestinal worms

Parasitic worms, also known as helminths, are large macroparasites; adults can generally be seen with the naked eye. Many are intestinal worms that are soil-transmitted and infect the gastrointestinal tract. Other parasitic worms such as schistosomes reside in blood vessels.

Flatworm Phylum of animals, flatworms

The flatworms, flat worms, Platyhelminthes, Plathelminthes, or platyhelminths are a phylum of relatively simple bilaterian, unsegmented, soft-bodied invertebrates. Unlike other bilaterians, they are acoelomates, and have no specialized circulatory and respiratory organs, which restricts them to having flattened shapes that allow oxygen and nutrients to pass through their bodies by diffusion. The digestive cavity has only one opening for both ingestion and egestion ; as a result, the food cannot be processed continuously.


Among chordates, some fishes and mammals have suckers, which are used as a holdfast to substrata. Among fishes some members of the order Perciformes have modified fins that form a sucker. Some bats, the Madagascar and the Western sucker-footed bat have unusual suckers on their limbs that are useful during roosting. Some amphibians such as the frog have adhesive pads on their toes to help with their locomotion.


A holdfast is a root-like structure that anchors aquatic sessile organisms, such as seaweed, other sessile algae, stalked crinoids, benthic cnidarians, and sponges, to the substrate.

Perciformes order of fishes

Perciformes, also called the Percomorpha or Acanthopteri, is an order or superorder of ray-finned fish. If considered a single order, they are the most numerous order of vertebrates, containing about 41% of all bony fish. Perciformes means "perch-like". This group comprises over 10,000 species found in almost all aquatic ecosystems.

Fish fin bony skin-covered spines or rays protruding from the body of a fish

Fins are usually the most distinctive anatomical features of a fish. They are composed of bony spines or rays protruding from the body with skin covering them and joining them together, either in a webbed fashion, as seen in most bony fish, or similar to a flipper, as seen in sharks. Apart from the tail or caudal fin, fish fins have no direct connection with the spine and are supported only by muscles. Their principal function is to help the fish swim. Fins located in different places on the fish serve different purposes such as moving forward, turning, keeping an upright position or stopping. Most fish use fins when swimming, flying fish use pectoral fins for gliding, and frogfish use them for crawling. Fins can also be used for other purposes; male sharks and mosquitofish use a modified fin to deliver sperm, thresher sharks use their caudal fin to stun prey, reef stonefish have spines in their dorsal fins that inject venom, anglerfish use the first spine of their dorsal fin like a fishing rod to lure prey, and triggerfish avoid predators by squeezing into coral crevices and using spines in their fins to lock themselves in place.

In helminths


In the class Turbellaria, only the species of the order Temnocephalida are parasitic and possess an adhesive disc. The sucker is present at the posterior end on the ventral side. [3] It is lined with syncytial epidermis and numerous microvilli. Beneath the apical membrane are many vacuoles and dense bodies. It is attached to the body through a short stalk. Densely packed muscle fibres link the sucker with the main body through the stalk. [4]

Turbellaria class of worms

The Turbellaria are one of the traditional sub-divisions of the phylum Platyhelminthes (flatworms), and include all the sub-groups that are not exclusively parasitic. There are about 4,500 species, which range from 1 mm (0.039 in) to large freshwater forms more than 500 mm (20 in) long or terrestrial species like Bipalium kewense which can reach 600 mm (24 in) in length. All the larger forms are flat with ribbon-like or leaf-like shapes, since their lack of respiratory and circulatory systems means that they have to rely on diffusion for internal transport of metabolites. However, many of the smaller forms are round in cross section. Most are predators, and all live in water or in moist terrestrial environments. Most forms reproduce sexually and with few exceptions all are simultaneous hermaphrodites.

The Temnocephalida are an order of turbellarian flatworms.


Udonellids are symbiotic to fishes, on which body they remain attached using a sucker. The sucker is a membranous extension of the posterior end. It has an indistinct stalk and the anterior surface is lined with microvilli. Some portion of the tegument has interconnected surface extension appearing as loops. The interior is divided into several compartments which are surrounded by interconnected connective tissue. The connective tissues are linked with muscles that extend into the main body. [4]

Connective tissue type of biological tissue

Connective tissue (CT) is one of the four basic types of animal tissue, along with epithelial tissue, muscle tissue, and nervous tissue. It develops from the mesoderm. Connective tissue is found in between other tissues everywhere in the body, including the nervous system. In the central nervous system, the three outer membranes that envelop the brain and spinal cord are composed of connective tissue. They support and protect the body. All connective tissue consists of three main components: fibers, ground substance and cells. Not all authorities include blood or lymph as connective tissue because they lack the fiber component. All are immersed in the body water.


In tapeworms, the sucker is called bothridium (plural "bothridia") [5] to differentiate it from the sucker-like protrusion called bothrium in some species. [1]

Bothria are elongate, dorsal or ventral longitudinal grooves on the scolex of cestoda. They have weak muscles but are capable of some sucking action. Bothria occur as a single or two pair and are typical of the order Pseudophyllidea.


Various aspects of anterior sucker of a zoogonid digenean Peerj-292-fig-7 Zoogonidae.png
Various aspects of anterior sucker of a zoogonid digenean

Among the flukes belonging to class Digenea, there are two suckers, namely an oral sucker and a ventral sucker (often called acetabulum). [7] The oral sucker is at the tip of the anterior body and directly surrounds the mouth. The ventral sucker is located halfway to the middle of the body on the ventral side. They are both used for attachment to intestinal wall and blood vessels. The detailed structure of the suckers, presence or absence of hooks, and their exact position on the body are major taxonnomic keys between species. [8]

Digenea subclass of worms

Digenea is a class of trematodes in the Platyhelminthes phylum, consisting of parasitic flatworms with a syncytial tegument and, usually, two suckers, one ventral and one oral. Adults are particularly common in the digestive tract, but occur throughout the organ systems of all classes of vertebrates. Once thought to be related to the Monogenea, it is now recognised that they are closest to the Aspidogastrea and that the Monogenea are more closely allied with the Cestoda. Around 6,000 species have been described to date.

Acetabulum in invertebrate zoology is a saucer-shaped organ of attachment in some annelid worms and flatworms. It is a specialised sucker for parasitic adaptation in trematodes by which the worms are able to attach on the host. In annelids, it is basically a locomotory organ for attaching to a substratum. The name also applies to the suction appendage on the arms of cephalopod molluscs such as squid, octopus, cuttlefish, Nautilus, etc.

In the class Monogenea, buccal organs, also known as buccal suckers, are present in worm parasites of the order Mazocraeidea. They are known to have muscular, glandular, and sensory components thought to play some role in blood feeding. In other species like Anoplodiscus, the sucker is a posterior extension, connected to the main body through a small stalk. The surface is profusely covered with microvilli. It is used for symbiotic association with fishes. [4]


Parasitic roundworms such as species of Ascaridia and Heterakis possess a single sucker at the posterior end of the body, just in front of anus, hence is often called a pre-anal sucker. Only the male roundworms have them, and are used for attachment to female during mating. The sucker is a protruding cuticle and circular in shape. [9] [10]

In annelids

A medicinal leech with its oral sucker Sucking leech.jpg
A medicinal leech with its oral sucker

Annelid worms such as leeches all have an anterior (oral) sucker formed from the first six segments of their body, which is used to connect to a host for feeding. It also releases an anaesthetic to prevent the host from feeling pain while it sucks blood. They use a combination of mucus and suction (caused by concentric muscles in those six segments) to stay attached and secrete an anti-clotting enzyme, hirudin, into the host's blood stream. The medicinal leech ( Hirudo medicinalis ) has two suckers, one at each end, called the anterior and posterior sucker. The posterior is mainly used for leverage while the anterior sucker, consisting of the jaw and teeth, is where the feeding takes place. [11] During locomotion directional movement of the body is done by successive attachment and detachment of the oral sucker and the acetabulum. [2]


An octopus displaying its suckers Octopus vulgaris.jpg
An octopus displaying its suckers

Cepaholopods are characterised by elongated appendages for locomotion and grasping object. There are two main types: arms, such as in octopus, bearing numerous suckers along its ventral surface; and tentacles, such as in squid and cuttlefish, having a single sucker at the tip. [12] Each sucker is a circular and bowl-like curved disc. It in turn has two distinct parts: an outer shallow cavity called infundibulum and a central hollow cavity called acetabulum. Both these structures are thick muscles, and are covered with chitinous cuticle to make a protective surface. [13] It is used for grasping substratum, catching prey and for locomotory accessory. When the sucker attaches itself on an object, the infundibulum maily provides adhesion while the central acetabulum is quite free. The sequential muscle contraction the infundibulum and acetabulum causes attachment and detachment. [14] [15]

In fish

Eumicrotremus phrynoides and Eumicrotremus orbis - lumpsuckers demonstrating adhesive pelvic discs. Toad and spiny lumpsuckers.jpg
Eumicrotremus phrynoides and Eumicrotremus orbis – lumpsuckers demonstrating adhesive pelvic discs.

Gobies, remoras and lumpsuckers have suckers which are modified fins. These fishes use their suckers to cling to substrata or to bigger fishes. In gobies the disc-shaped sucker is formed from fused pelvic fins. Amphidromous gobies particularly use their suckers for climbing through waterfalls during their developmental migrations. [16] [17] In remoras the sucker is a modified dorsal fin. In lumpsuckers, also known as lumpfish, the sucker is formed from modified pelvic fins, located ventrally, and behind the pectoral fins.

A fish family the Catostomidae are known as suckers. These fish have a suckermouth.

In bats

Certain species of bats such as Madagascar sucker-footed bat and Western sucker-footed bat, are generally called "sucker-footed bats" because of suckers on their limbs. They are members of the family Myzopodidae and endemic to Madagascar. They have small cups of suckers on their wrists and ankles. They roost inside the rolled leaves of palm trees, using their suckers to attach themselves to the smooth surface. [18] [19]

Related Research Articles

Octopus order of molluscs

The octopus is a soft-bodied, eight-limbed mollusc of the order Octopoda. Around 300 species are recognised, and the order is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. Like other cephalopods, the octopus is bilaterally symmetric with two eyes and a beak, with its mouth at the center point of the eight limbs. The soft body can rapidly alter its shape, enabling octopuses to squeeze through small gaps. They trail their eight appendages behind them as they swim. The siphon is used both for respiration and for locomotion, by expelling a jet of water. Octopuses have a complex nervous system and excellent sight, and are among the most intelligent and behaviourally diverse of all invertebrates.

Squid order of molluscs

Squid are cephalopods in the superorder Decapodiformes with elongated bodies, large eyes, eight arms and two tentacles. Like all other cephalopods, squid have a distinct head, bilateral symmetry, and a mantle. They are mainly soft-bodied, like octopuses, but have a small internal skeleton in the form of a rod-like gladius or pen, made of chitin.

Gastrotrich phylum of microscopic pseudocoelomate animals

The gastrotrichs, commonly referred to as hairybacks, are a group of microscopic (0.06-3.0 mm), worm-like, pseudocoelomate animals, and are widely distributed and abundant in freshwater and marine environments. They are mostly benthic and live within the periphyton, the layer of tiny organisms and detritus that is found on the seabed and the beds of other water bodies. The majority live on and between particles of sediment or on other submerged surfaces, but a few species are terrestrial and live on land in the film of water surrounding grains of soil. Gastrotrichs are divided into two orders, the Macrodasyida which are marine, and the Chaetonotida, some of which are marine and some freshwater. Nearly eight hundred species of gastrotrich have been described.

Anatomical terms of location Standard terms for unambiguous description of relative placement of body parts

Standard anatomical terms of location deal unambiguously with the anatomy of animals, including humans.

Femur most proximal bone of the leg for tetrapode vertebrates, longest bone for humans

The femur, or thigh bone, is the proximal bone of the hindlimb in tetrapod vertebrates. The head of the femur articulates with the acetabulum in the pelvic bone forming the hip joint, while the distal part of the femur articulates with the tibia and kneecap forming the knee joint. By most measures the femur is the strongest bone in the body. The femur is also the longest bone in the human body.

Monogenea Class of worms

Monogeneans are a group of ectoparasitic flatworms commonly found on the skin, gills, or fins of fish. They have a direct lifecycle and do not require an intermediate host. Adults are hermaphrodites, meaning they have both male and female reproductive structures. Monogeneans have a series of hooks which are used to attach onto fish, and as a result, could lead to infections.

Animal locomotion self-propulsion by an animal

Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing, kiting (spiders), rolling or riding other animals (phoresis).

The Aspidogastrea is a small group of flukes comprising about 80 species. It is a subclass of the trematoda, and sister group to the Digenea. Species range in length from approximately one millimeter to several centimeters. They are parasites of freshwater and marine molluscs and vertebrates. Maturation may occur in the mollusc or vertebrate host. None of the species has any economic importance, but the group is of very great interest to biologists because it has several characters which appear to be archaic.

Cephalopod limb

All cephalopods possess flexible limbs extending from their heads and surrounding their beaks. These appendages, which function as muscular hydrostats, have been variously termed arms, legs or tentacles.

Entobdella soleae is a monogenean (Platyhelminth) skin parasite of the common sole, Solea solea, an important food fish. Typically, 2-6 parasites are found on wild sole, but in intensive fish farms this can rise to 200-300 parasites per fish, causing skin inflammation and sometimes death of the sole. E. soleae can live up to 120 days in seawater.

Leech subclass of worms

Leeches are segmented parasitic or predatory worms that belong to the phylum Annelida and comprise the subclass Hirudinea. They are closely related to the oligochaetes, which include the earthworms, and like them have soft, muscular, segmented bodies that can lengthen and contract. Both groups are hermaphrodites and have a clitellum, but leeches typically differ from the oligochaetes in having suckers at both ends and in having external annulations that do not correspond with their internal segmentation. The body is relatively solid, and the spacious body cavity found in other annelids, the coelom, is reduced to small channels.

Heterakis is a genus of parasitic nematodes. Members of the genus are minute roundworms (pinworms), hardly 1 cm long, infecting different species of gallinaceous birds, including chickens, turkeys, ducks, geese, grouse, guineafowl, partridges, pheasants, and quail. About 10 species are placed in the genus, but classification is often ambiguous due to their close resemblance, and a number of synonyms have arisen. H. gallinarumSchrank, 1788; H. isolonchevon Linstow, 1906; and H. disparSchrank, 1870 are the best understood species in terms of prevalence, pathogenicity, and biology. They inhabit the lumen of the cecum of the host.

Pelvis lower part of the trunk of the human body between the abdomen and the thighs (sometimes also called pelvic region of the trunk

The pelvis is either the lower part of the trunk of the human body between the abdomen and the thighs or the skeleton embedded in it.

Homalometron pallidum is a species of marine trematodes in the family Apocreadiidae. It is an endoparasite of the mummichog, Fundulus heteroclitus, a small fish found in brackish water along the east coast of the United States and Canada. It has a complex life cycle and lives inside several different host species at different stages.

Haptor organ of Monogeneans

The haptor is the attachment organ of the monogeneans, a group of parasitic Platyhelminthes. The haptor is sometimes called opisthaptor to emphasize that it is located in the posterior part of the body, and to differentiate it from the prohaptor, a structure including glands located at the anterior part of the body. According to Yamaguti (1963), the chief adhesive organ of the monogeneans, the haptor, is posterior, more or less discoid, muscular, may be divided into alveoli or loculi, is usually provided with anchors, has nearly always marginal larval hooklets, or is in a reduced form with anchors. The haptor may consist of symmetrical or asymmetrical, sessile or pedunculate, muscular suckers or clamps with or without supporting sclerites; accessory adhesive organs may be present in form of armed plaques, lappets or appendices.

Pelvic fin

Pelvic fins are paired fins located on the ventral surface of fish. The paired pelvic fins are homologous to the hindlimbs of tetrapods.

Batoids are a superorder of cartilaginous fish consisting of skates, rays and other fish all characterized by dorsoventrally flattened bodies and large pectoral fins fused to the head. This distinctive morphology has resulted in several unique forms of locomotion. Most Batoids exhibit median paired fin swimming, utilizing their enlarged pectoral fins. Batoids that exhibit median paired fin swimming fall somewhere along a spectrum of swimming modes from mobuliform to rajiform based on the number of waves present on their fin at once. Of the four orders of Batoidae this holds truest for the Myliobatiformes (rays) and the Rajiformes (skates). The two other orders: Rhinopristiformes and Torpediniformes exhibit a greater degree of body caudal fin swimming.


  1. 1 2 Castro GA (1996). "Helminths: Structure, Classification, Growth, and Development". In Baron S (ed.). Medical Microbiology (4 ed.). Galveston (TX): University of Texas Medical Branch at Galveston. ISBN   978-0-9631172-1-2. PMID   21413252.
  2. 1 2 Stern-Tomlinson W, Nusbaum MP, Perez LE, Kristan WB Jr (1986). "A kinematic study of crawling behavior in the leech, Hirudo medicinalis". J Comp Physiol A. 158 (4): 593–603. doi:10.1007/bf00603803. PMID   3723440.
  3. Hosie, Andrew. "Friendly Flatworms: The Temnocephalida". Government of Western Australia. Retrieved 14 February 2014.
  4. 1 2 3 Rohde, K.; Watson, N. A. (1995). "Comparative ultrastructural study of the posterior suckers of four species of symbiotic Platyhelminthes, Temnocephala sp, Udonella caligorum, Anoplodiscus cirrusspiralis, and Philophthalmus sp" (PDF). Folia Parasitologica. 42 (1): 11–28.
  5. Bothridium on
  6. Bray, RA.; Justine, J-L. (2014). "A review of the Zoogonidae (Digenea: Microphalloidea) from fishes of the waters around New Caledonia, with the description of Overstreetia cribbi n. sp". PeerJ. 2: e292. doi:10.7717/peerj.292. PMC   3961169 . PMID   24688868.
  7. Neuhaus, Walter (1985). "Die Arbeitsweise des Bauchsaugnapfes digenetischer Trematoden am Beispiel desDicrocoelium dendriticum". Zeitschrift für Parasitenkunde. 71 (1): 53–60. doi:10.1007/BF00932918. PMID   3984451.
  8. Baker, David G. (2008). Flynn's Parasites of Laboratory Animals (2nd ed.). Hoboken: John Wiley & Sons. pp. 31, 138. ISBN   9780470344170.
  9. "Heterakis gallinae". Bioinformatics Centre, North-Eastern Hill University. Retrieved 14 February 2014.
  10. Park, Sang-Ik; Shin, Sung-Shik (2010). "Concurrent Capillaria and Heterakis Infections in Zoo Rock Partridges, Alectoris graeca". The Korean Journal of Parasitology. 48 (3): 253–7. doi:10.3347/kjp.2010.48.3.253. PMC   2945802 . PMID   20877506.
  11. Farnesi RM, Marinelli M, Tei S, Vagnetti D (1981). "Morphological and ultrastructural aspects of Branchiobdella pentodonta Whit. (Annelida, Oligochaeta) suckers". J Morphol. 170 (2): 195–205. doi:10.1002/jmor.1051700206. PMID   7299828.
  12. Boumis R (2013). "Animals With Tentacles". Pawnation. AOL Inc. Retrieved 2013-06-08.
  13. Walla G (2007). "A study of the Comparative Morphology of Cephalopod Armature". Deep Intuition, LLC. Retrieved 2013-06-08.
  14. Kier WM, Smith AM (2002). "The structure and adhesive mechanism of octopus suckers". Integr Comp Biol. 42 (6): 1146–1153. doi:10.1093/icb/42.6.1146. PMID   21680399.
  15. Octopuses & Relatives. "Learn about octopuses & relatives: locomotion". Retrieved 2013-06-08.
  16. Maie, T.; Schoenfuss, H. L.; Blob, R. W. (2012). "Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes". Journal of Experimental Biology. 215 (22): 3925–3936. doi:10.1242/jeb.072967. PMID   23100486.
  17. Knight, K. (2012). "Climbing gobies have small but powerful suckers". Journal of Experimental Biology. 215 (22): ii. doi:10.1242/jeb.081273. PMID   23256209.
  18. Macdonald, D., ed. (1984). The Encyclopedia of Mammals . New York: Facts on File. p. 807. ISBN   978-0-87196-871-5.
  19. Brown University News, December 2009, Bats Don’t Use Suction After All