Semapimod

Last updated
Semapimod
Semapimod cs.svg
Semapimod sf.gif
Clinical data
ATC code
  • none
Identifiers
  • N,N'-bis[3,5-bis[N-(diaminomethylideneamino)-C-methylcarbonimidoyl]phenyl] decanediamide tetrahydrochloride
CAS Number
PubChem CID
UNII
ChEMBL
Chemical and physical data
Formula C34H56Cl4N18O2
Molar mass 890.75 g·mol−1
3D model (JSmol)
  • CC(=NN=C(N)N)C1=CC(=CC(=C1)NC(=O)CCCCCCCCC(=O)NC2=CC(=CC(=C2)C(=NN=C(N)N)C)C(=NN=C(N)N)C)C(=NN=C(N)N)C.Cl.Cl.Cl.Cl
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Semapimod (INN), formerly known as CNI-1493, is an investigational new drug which has anti-inflammatory, [1] anti-cytokine, [2] immunomodulatory, [3] antiviral [4] and antimalarial [5] properties.

Contents

History

Semapimod was developed at the former Picower Institute for Medical Research, and is now licensed to Cytokine PharmaSciences. In 2000, Cytokine PharmaSciences licensed anti-infective applications of semapimod to Axxima Pharmaceuticals, but Axxima became insolvent in Dec. 2004 and its assets were acquired by GPC Biotech, which has recently merged into Agennix AG. Although the disposition of Axxima's partial rights to semapimod was not specified in these merger announcements, Cytokine PharmaSciences does not currently list any licensees for semapimod on its website.[ citation needed ]

Mechanism of action

Semapimod was first developed to inhibit nitric oxide synthesis by inflammatory macrophages, via inhibition of the uptake of arginine which macrophages require for nitric oxide synthesis. [1] Subsequently, it was found that suppression of nitric oxide synthesis occurred even at semapimod concentrations 10-fold less than required for inhibition of arginine uptake, suggesting that this molecule was a more general inhibitor of inflammatory responses. [2] Further work revealed that semapimod suppressed the translation efficiency of tumor necrosis factor production. [6] Specifically, semapimod was found to be an inhibitor of p38 MAP kinase activation. [7] Surprisingly, however, the primary mode of action in vivo is now thought to be via stimulation of the vagus nerve, thereby down-regulating inflammatory pathways via the recently discovered cholinergic anti-inflammatory pathway. [8] [9]

Pharmacology and clinical trials

In a preclinical study in rats, semapimod was found to suppress cytokine-storm induction by the anticancer cytokine interleukin-2 (IL-2) without decreasing its anticancer properties, allow larger doses of IL-2 to be administered. [10] A subsequent phase I trial in humans failed to show an increase in the tolerated dose of IL-2, although indications of pharmacological activity as an inhibitor of tumor necrosis factor production were observed. [11]

In a preliminary clinical trial of semapimod in patients with moderate to severe Crohn's disease, positive clinical changes were observed, including endoscopic improvement, positive responses in some patients not responding to infliximab, healing of fistulae, and indications for tapering of steroids; no significant adverse effects were observed. [12]

In a small clinical trial against post-ERCP pancreatitis, significant suppression was not observed, although investigators observed a significant reduction of the incidence of hyperamylasemia and the levels of post-ERCP amylase. [13]

In the clinical trials above, semapimod tetrahydrochloride was administered by intravenous injection. This route has drawbacks such as dose-limiting phlebitis. Recently Cytokine PharmaSciences has announced the development of novel salt forms of semapimod which are said to be orally absorbable; a phase I clinical trial of one of these salt forms, CPSI-2364, has been completed, and a phase II trial is planned for 2010.

Chemistry

Semapimod is synthesized by reacting 3,5-diacetylaniline [14] with sebacoyl chloride in the presence of pyridine, followed by reaction of the resulting tetraketone with aminoguanidine hydrochloride. [1]

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

p38 mitogen-activated protein kinases are a class of mitogen-activated protein kinases (MAPKs) that are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation, apoptosis and autophagy. Persistent activation of the p38 MAPK pathway in muscle satellite cells due to ageing, impairs muscle regeneration.

<span class="mw-page-title-main">Alveolar macrophage</span>

An alveolar macrophage, pulmonary macrophage, is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.

<span class="mw-page-title-main">CCL3</span> Mammalian protein found in Homo sapiens

Chemokine ligand 3 (CCL3) also known as macrophage inflammatory protein 1-alpha (MIP-1-alpha) is a protein that in humans is encoded by the CCL3 gene.

<span class="mw-page-title-main">CXCL2</span> Mammalian protein found in Homo sapiens

Chemokine ligand 2 (CXCL2) is a small cytokine belonging to the CXC chemokine family that is also called macrophage inflammatory protein 2-alpha (MIP2-alpha), Growth-regulated protein beta (Gro-beta) and Gro oncogene-2 (Gro-2). CXCL2 is 90% identical in amino acid sequence as a related chemokine, CXCL1. This chemokine is secreted by monocytes and macrophages and is chemotactic for polymorphonuclear leukocytes and hematopoietic stem cells. The gene for CXCL2 is located on human chromosome 4 in a cluster of other CXC chemokines. CXCL2 mobilizes cells by interacting with a cell surface chemokine receptor called CXCR2.

The cholinergic anti-inflammatory pathway regulates the innate immune response to injury, pathogens, and tissue ischemia. It is the efferent, or motor arm of the inflammatory reflex, the neural circuit that responds to and regulates the inflammatory response.

<span class="mw-page-title-main">Tyrosine kinase 2</span> Enzyme and coding gene in humans

Non-receptor tyrosine-protein kinase TYK2 is an enzyme that in humans is encoded by the TYK2 gene.

<span class="mw-page-title-main">Macrophage migration inhibitory factor</span> Protein-coding gene in the species Homo sapiens

Macrophage migration inhibitory factor (MIF), also known as glycosylation-inhibiting factor (GIF), L-dopachrome isomerase, or phenylpyruvate tautomerase is a protein that in humans is encoded by the MIF gene. MIF is an important regulator of innate immunity. The MIF protein superfamily also includes a second member with functionally related properties, the D-dopachrome tautomerase (D-DT). CD74 is a surface receptor for MIF.

<span class="mw-page-title-main">HMGB1</span> Mammalian protein found in Homo sapiens

High mobility group box 1 protein, also known as high-mobility group protein 1 (HMG-1) and amphoterin, is a protein that in humans is encoded by the HMGB1 gene.

Ulinastatin, as an urinary trypsin inhibitor (UTI), is a glycoprotein that is isolated from healthy human urine or synthetically produced and has molecular weight of 25 - 40kDa. Highly purified ulinastatin has been clinically used for the treatment of acute pancreatitis, chronic pancreatitis, Stevens–Johnson syndrome, burns, septic shock, and toxic epidermal necrolysis (TEN).

<span class="mw-page-title-main">Colony stimulating factor 1 receptor</span> Protein-coding gene in the species Homo sapiens

Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-stimulating factor receptor (M-CSFR), and CD115, is a cell-surface protein encoded by the human CSF1R gene. CSF1R is a receptor that can be activated by two ligands: colony stimulating factor 1 (CSF-1) and interleukin-34 (IL-34). CSF1R is highly expressed in myeloid cells, and CSF1R signaling is necessary for the survival, proliferation, and differentiation of many myeloid cell types in vivo and in vitro. CSF1R signaling is involved in many diseases and is targeted in therapies for cancer, neurodegeneration, and inflammatory bone diseases.

<span class="mw-page-title-main">Kevin J. Tracey</span>

Kevin J. Tracey, a neurosurgeon and inventor, is the president and CEO of the Feinstein Institute for Medical Research, professor of neurosurgery and molecular medicine at the Zucker School of Medicine, and president of the Elmezzi Graduate School of Molecular Medicine in Manhasset, New York. The Public Library of Science Magazine, PLOS Biology, recognized Tracey in 2019 as one of the most cited researchers in the world.

An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include interleukin-1 (IL-1), IL-6, IL-12, and IL-18, tumor necrosis factor alpha (TNF-α), interferon gamma (IFNγ), and granulocyte-macrophage colony stimulating factor (GM-CSF) and play an important role in mediating the innate immune response. Inflammatory cytokines are predominantly produced by and involved in the upregulation of inflammatory reactions.

<span class="mw-page-title-main">Losmapimod</span> Chemical compound

Losmapimod (GW856553X) is an investigational drug being developed by Fulcrum Therapeutics for the treatment of facioscapulohumeral muscular dystrophy (FSHD); a phase III clinical trial is pending approval. Losmapimod selectively inhibits enzymes p38α/β mitogen-activated protein kinases (MAPKs), which are modulators of DUX4 expression and mediators of inflammation.

Anti-interleukin-6 agents are a class of therapeutics. Interleukin 6 is a cytokine relevant to many inflammatory diseases and many cancers. Hence, anti-IL6 agents have been sought. In rheumatoid arthritis they can help patients unresponsive to TNF inhibitors.

A Janus kinase inhibitor, also known as JAK inhibitor or jakinib, is a type of immune modulating medication, which inhibits the activity of one or more of the Janus kinase family of enzymes, thereby interfering with the JAK-STAT signaling pathway in lymphocytes.

The inflammatory reflex is a neural circuit that regulates the immune response to injury and invasion. All reflexes have an afferent and efferent arc. The Inflammatory reflex has a sensory afferent arc, which is activated by cytokines, and a motor or efferent arc, which transmits action potentials in the vagus nerve to suppress cytokine production. Increased signaling in the efferent arc inhibits inflammation and prevents organ damage.

Adipose tissue macrophages comprise tissue resident macrophages present in adipose tissue. Adipose tissue apart from adipocytes is composed of the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in extremely obese, leptin deficient mice and almost 40% in obese humans. Increased number of adipose tissue macrophages correlates with increased adipose tissue production of proinflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity.

<span class="mw-page-title-main">Interleukin 23</span> Heterodimeric cytokine acting as mediator of inflammation

Interleukin 23 (IL-23) is a heterodimeric cytokine composed of an IL-12B (IL-12p40) subunit and an IL-23A (IL-23p19) subunit. IL-23 is part of the IL-12 family of cytokines. The functional receptor for IL-23 consists of a heterodimer between IL-12Rβ1 and IL-23R.

References

  1. 1 2 3 Bianchi M, Ulrich P, Bloom O, Meistrell M, Zimmerman GA, Schmidtmayerova H, et al. (March 1995). "An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality". Molecular Medicine. 1 (3): 254–66. doi:10.1007/BF03401550. PMC   2229913 . PMID   8529104.
  2. 1 2 Bianchi M, Bloom O, Raabe T, Cohen PS, Chesney J, Sherry B, et al. (March 1996). "Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone". The Journal of Experimental Medicine. 183 (3): 927–36. doi:10.1084/jem.183.3.927. PMC   2192362 . PMID   8642296.
  3. Martiney JA, Rajan AJ, Charles PC, Cerami A, Ulrich PC, Macphail S, et al. (June 1998). "Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent" (Free full text). Journal of Immunology. 160 (11): 5588–95. doi: 10.4049/jimmunol.160.11.5588 . PMID   9605164. S2CID   12503616.
  4. Hauber I, Bevec D, Heukeshoven J, Krätzer F, Horn F, Choidas A, et al. (January 2005). "Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy". The Journal of Clinical Investigation (Free full text). 115 (1): 76–85. doi:10.1172/JCI21949. PMC   539192 . PMID   15630446.
  5. Specht S, Sarite SR, Hauber I, Hauber J, Görbig UF, Meier C, et al. (May 2008). "The guanylhydrazone CNI-1493: an inhibitor with dual activity against malaria-inhibition of host cell pro-inflammatory cytokine release and parasitic deoxyhypusine synthase". Parasitology Research. 102 (6): 1177–84. doi:10.1007/s00436-008-0891-x. PMID   18256853. S2CID   27771876.
  6. Cohen PS, Nakshatri H, Dennis J, Caragine T, Bianchi M, Cerami A, Tracey KJ (April 1996). "CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency". Proceedings of the National Academy of Sciences of the United States of America. 93 (9): 3967–71. Bibcode:1996PNAS...93.3967C. doi: 10.1073/pnas.93.9.3967 . PMC   39469 . PMID   8632999.
  7. Cohen PS, Schmidtmayerova H, Dennis J, Dubrovsky L, Sherry B, Wang H, et al. (May 1997). "The critical role of p38 MAP kinase in T cell HIV-1 replication". Molecular Medicine. 3 (5): 339–46. doi:10.1007/BF03401812. PMC   2230081 . PMID   9205949.
  8. Tracey KJ (February 2007). "Physiology and immunology of the cholinergic antiinflammatory pathway". The Journal of Clinical Investigation (Free full text). 117 (2): 289–96. doi:10.1172/JCI30555. PMC   1783813 . PMID   17273548.
  9. Oke SL, Tracey KJ (March 2008). "From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex" (Free full text). Journal of Leukocyte Biology. 83 (3): 512–7. CiteSeerX   10.1.1.527.419 . doi:10.1189/jlb.0607363. PMID   18065685. S2CID   612157.
  10. Kemeny MM, Botchkina GI, Ochani M, Bianchi M, Urmacher C, Tracey KJ (April 1998). "The tetravalent guanylhydrazone CNI-1493 blocks the toxic effects of interleukin-2 without diminishing antitumor efficacy". Proceedings of the National Academy of Sciences of the United States of America. 95 (8): 4561–6. Bibcode:1998PNAS...95.4561K. doi: 10.1073/pnas.95.8.4561 . PMC   22529 . PMID   9539777.
  11. Atkins MB, Redman B, Mier J, Gollob J, Weber J, Sosman J, et al. (March 2001). "A phase I study of CNI-1493, an inhibitor of cytokine release, in combination with high-dose interleukin-2 in patients with renal cancer and melanoma". Clinical Cancer Research. 7 (3): 486–92. PMID   11297238.
  12. Hommes D, van den Blink B, Plasse T, Bartelsman J, Xu C, Macpherson B, et al. (January 2002). "Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease". Gastroenterology. 122 (1): 7–14. doi: 10.1053/gast.2002.30770 . PMID   11781274.
  13. van Westerloo DJ, Rauws EA, Hommes D, de Vos AF, van der Poll T, Powers BL, et al. (August 2008). "Pre-ERCP infusion of semapimod, a mitogen-activated protein kinases inhibitor, lowers post-ERCP hyperamylasemia but not pancreatitis incidence". Gastrointestinal Endoscopy. 68 (2): 246–54. doi:10.1016/j.gie.2008.01.034. PMID   18455169.
  14. Ulrich P, Cerami A (January 1984). "Trypanocidal 1,3-arylene diketone bis(guanylhydrazone)s. Structure-activity relationships among substituted and heterocyclic analogues". Journal of Medicinal Chemistry. 27 (1): 35–40. doi:10.1021/jm00367a007. PMID   6690682.