Semimodular lattice

Last updated
The centred hexagon lattice S7, also known as D2, is semimodular but not modular. Centred hexagon lattice D2.svg
The centred hexagon lattice S7, also known as D2, is semimodular but not modular.

In the branch of mathematics known as order theory, a semimodular lattice, is a lattice that satisfies the following condition:

Contents

Semimodular law
a  b  <:  a  implies  b  <:  a  b.

The notation a <: b means that b covers a, i.e. a < b and there is no element c such that a < c < b.

An atomistic semimodular bounded lattice is called a matroid lattice because such lattices are equivalent to (simple) matroids. An atomistic semimodular bounded lattice of finite length is called a geometric lattice and corresponds to a matroid of finite rank. [1]

Semimodular lattices are also known as upper semimodular lattices; the dual notion is that of a lower semimodular lattice. A finite lattice is modular if and only if it is both upper and lower semimodular.

A finite lattice, or more generally a lattice satisfying the ascending chain condition or the descending chain condition, is semimodular if and only if it is M-symmetric. Some authors refer to M-symmetric lattices as semimodular lattices. [2]

A semimodular lattice is one kind of algebraic lattice.

Birkhoff's condition

A lattice is sometimes called weakly semimodular if it satisfies the following condition due to Garrett Birkhoff:

Birkhoff's condition
If  a  b  <:  a and a  b  <:  b,
then  a  <:  a  b and b  <:  a  b.

Every semimodular lattice is weakly semimodular. The converse is true for lattices of finite length, and more generally for upper continuous (meets distribute over joins of chains) relatively atomic lattices.

Mac Lane's condition

The following two conditions are equivalent to each other for all lattices. They were found by Saunders Mac Lane, who was looking for a condition that is equivalent to semimodularity for finite lattices, but does not involve the covering relation.

Mac Lane's condition 1
For any a, b, c such that b  c < a < c < b  a,
there is an element d such that b  c < db and a = (a  d)  c.
Mac Lane's condition 2
For any a, b, c such that b  c < a < c < b  c,
there is an element d such that b  c < db and a = (a  d)  c.

Every lattice satisfying Mac Lane's condition is semimodular. The converse is true for lattices of finite length, and more generally for relatively atomic lattices. Moreover, every upper continuous lattice satisfying Mac Lane's condition is M-symmetric.

Notes

  1. These definitions follow Stern (1999). Some authors use the term geometric lattice for the more general matroid lattices. Most authors only deal with the finite case, in which both definitions are equivalent to semimodular and atomistic.
  2. For instance, Fofanova (2001).

Related Research Articles

<span class="mw-page-title-main">Equivalence relation</span> Mathematical concept for comparing objects

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.

In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in :

  1. (reflexive).
  2. If and then (transitive).
  3. If and then (antisymmetric).
  4. or .

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies:

<span class="mw-page-title-main">Partition of a set</span> Mathematical ways to group elements of a set

In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.

In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets

<span class="mw-page-title-main">Antimatroid</span> Mathematical system of orderings or sets

In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included. Dilworth (1940) was the first to study antimatroids, using yet another axiomatization based on lattice theory, and they have been frequently rediscovered in other contexts.

<span class="mw-page-title-main">Complemented lattice</span>

In the mathematical discipline of order theory, a complemented lattice is a bounded lattice, in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique.

In the mathematical field of order theory, an element a of a partially ordered set with least element 0 is an atom if 0 < a and there is no x such that 0 < x < a.

<span class="mw-page-title-main">Modular lattice</span>

In the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self-dual condition,

<span class="mw-page-title-main">Graded poset</span>

In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank functionρ from P to the set N of all natural numbers. ρ must satisfy the following two properties:

In mathematics, two objects, especially systems of axioms or semantics for them, are called cryptomorphic if they are equivalent but not obviously equivalent. In particular, two definitions or axiomatizations of the same object are "cryptomorphic" if it is not obvious that they define the same object. Examples of cryptomorphic definitions abound in matroid theory and others can be found elsewhere, e.g., in group theory the definition of a group by a single operation of division, which is not obviously equivalent to the usual three "operations" of identity element, inverse, and multiplication.

Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.

In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself. The conjecture that every distributive lattice is a congruence lattice is true for all distributive lattices with at most 1 compact elements, but F. Wehrung provided a counterexample for distributive lattices with ℵ2 compact elements using a construction based on Kuratowski's free set theorem.

<span class="mw-page-title-main">Dedekind–MacNeille completion</span> Smallest complete lattice containing a partial order

In mathematics, specifically order theory, the Dedekind–MacNeille completion of a partially ordered set is the smallest complete lattice that contains it. It is named after Holbrook Mann MacNeille whose 1937 paper first defined and constructed it, and after Richard Dedekind because its construction generalizes the Dedekind cuts used by Dedekind to construct the real numbers from the rational numbers. It is also called the completion by cuts or normal completion.

In the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite, or finite and infinite, matroids, and every geometric or matroid lattice comes from a matroid in this way.

In mathematics, continuous geometry is an analogue of complex projective geometry introduced by von Neumann, where instead of the dimension of a subspace being in a discrete set , it can be an element of the unit interval . Von Neumann was motivated by his discovery of von Neumann algebras with a dimension function taking a continuous range of dimensions, and the first example of a continuous geometry other than projective space was the projections of the hyperfinite type II factor.

References

See also