Sequential bargaining (also known as alternate-moves bargaining, alternating-offers protocol, etc.) is a structured form of bargaining between two participants, in which the participants take turns in making offers. Initially, person #1 has the right to make an offer to person #2. If person #2 accepts the offer, then an agreement is reached and the process ends. If person #2 rejects the offer, then the participants switch turns, and now it is the turn of person #2 to make an offer (which is often called a counter-offer). The people keep switching turns until either an agreement is reached, or the process ends with a disagreement due to a certain end condition. Several end conditions are common, for example:
Several settings of sequential bargaining have been studied.
An alternating-offers protocol induces a sequential game. A natural question is what outcomes can be attained in an equilibrium of this game. At first glance, the first player has the power to make a very selfish offer. For example, in the Dividing the Dollar game, player #1 can offer to give only 1% of the money to player #2, and threaten that "if you do not accept, I will refuse all offers from now on, and both of us will get 0". But this is a non-credible threat, since if player #2 refuses and makes a counter-offer (e.g. give 2% of the money to player #1), then it is better for player #1 to accept. Therefore, a natural question is: what outcomes are a subgame perfect equilibrium (SPE) of this game? This question has been studied in various settings.
Ariel Rubinstein studied a setting in which the negotiation is on how to divide $1 between the two players. [1] Each player in turn can offer any partition. The players bear a cost for each round of negotiation. The cost can be presented in two ways:
Rubinstein and Wolinsky [2] studied a market in which there are many players, partitioned into two types (e.g. "buyers" and "sellers"). Pairs of players of different types are brought together randomly, and initiate a sequential-bargaining process over the division of a surplus (as in the Divide the Dollar game). If they reach an agreement, they leave the market; otherwise, they remain in the market and wait for the next match. The steady-state equilibrium in this market it is quite different than competitive equilibrium in standard markets (e.g. Fisher market or Arrow–Debreu market).
Fudenberg and Tirole [3] study sequential bargaining between a buyer and a seller who have incomplete information, i.e., they do not know the valuation of their partner. They focus on a two-turn game (i.e., the seller has exactly two opportunities to sell the item to the buyer). Both players prefer a trade today than the same trade tomorrow. They analyze the Perfect Bayesian equilibrium (PBE) in this game, if the seller's valuation is known, then the PBE is generically unique; but if both valuations are private, then there are multiple PBE. Some surprising findings, that follow from the information transfer and the lack of commitment, are:
Grossman and Perry [4] study sequential bargaining between a buyer and a seller over an item price, where the buyer knows the gains-from-trade but the seller does not. They consider an infinite-turn game with time discounting. They show that, under some weak assumptions, there exists a unique perfect sequential equilibrium, in which:
Nejat Anbarci [5] studied a setting with a finite number of outcomes, where each of the two agents may have a different preference order over the outcomes. The protocol rules disallow repeating the same offer twice. In any such game, there is a unique SPE. It is always Pareto optimal; it is always one of the two Pareto-optimal options of which rankings by the players are the closest. It can be found by finding the smallest integer k for which the sets of k best options of the two players have a non-empty intersection. For example, if the rankings are a>b>c>d and c>b>a>d, then the unique SPE is b (with k=2). If the rankings are a>b>c>d and d>c>b>a, then the SPE is either b or c (with k=3).
In a later study, Anbarci [6] studies several schemes for two agents who have to select an arbitrator from a given set of candidates:
In all schemes, if the options are uniformly distributed over the bargaining set and their number approaches infinity, then the unique SPE outcome converges to the Equal-Area solution of the cooperative bargaining problem.
Erlich, Hazon and Kraus [7] study the Alternating Offers protocol in several informational settings:
The Dividing-the-Dollar game has been studied in several laboratory experiments. In general, subjects behave quite differently from the unique SPE. Subjects' behavior depends on the number of turns, their experience with the game, and their beliefs about fairness. There have been multiple experiments. [8]
A field study was done by Backus, Blake, Larsen and Tadelis. [9] They studied back-and-forth sequential bargaining in over 25 million listings from the Best Offer platform of eBay. Their main findings are:
They also report some findings that cannot be rationalized by the existing theories:
They suggest that these findings can be explained by behavioral norms.
In the social sciences, bargaining or haggling is a type of negotiation in which the buyer and seller of a good or service debate the price or nature of a transaction. If the bargaining produces agreement on terms, the transaction takes place. It is often commonplace in poorer countries, or poorer localities within any specific country. Haggling can mostly be seen within street markets worldwide, wherein there remains no guarantee of the origin and authenticity of available products. Many people attribute it as a skill, but there remains no guarantee that the price put forth by the buyer would be acknowledged by the seller, resulting in losses of profit and even turnover in some cases. A growth in the country's GDP Per Capita Income is bound to reduce both the ill-effects of bargaining and the unscrupulous practices undertaken by vendors at street markets.
In game theory, a move, action, or play is any one of the options which a player can choose in a setting where the optimal outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship.
In game theory, a non-cooperative game is a game in which there are no external rules or binding agreements that enforce the cooperation of the players. A non-cooperative game is typically used to model a competitive environment. This is stated in various accounts most prominent being John Nash's 1951 paper in the journal Annals of Mathematics.
In economics, the hold-up problem is central to the theory of incomplete contracts, and shows the difficulty in writing complete contracts. A hold-up problem arises when two factors are present:
In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.
In game theory, a Bayesian game is a strategic decision-making model which assumes players have incomplete information. Players may hold private information relevant to the game, meaning that the payoffs are not common knowledge. Bayesian games model the outcome of player interactions using aspects of Bayesian probability. They are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information.
In an auction, bid shading is the practice of a bidder placing a bid that is below what they believe a bid is worth.
In economics, a reservationprice is a limit on the price of a good or a service. On the demand side, it is the highest price that a buyer is willing to pay; on the supply side, it is the lowest price a seller is willing to accept for a good or service.
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.
A double auction is a process of buying and selling goods with multiple sellers and multiple buyers. Potential buyers submit their bids and potential sellers submit their ask prices to the market institution, and then the market institution chooses some price p that clears the market: all the sellers who asked less than p sell and all buyers who bid more than p buy at this price p. Buyers and sellers that bid or ask for exactly p are also included. A common example of a double auction is stock exchange.
The Myerson–Satterthwaite theorem is an important result in mechanism design and the economics of asymmetric information, and named for Roger Myerson and Mark Satterthwaite. Informally, the result says that there is no efficient way for two parties to trade a good when they each have secret and probabilistically varying valuations for it, without the risk of forcing one party to trade at a loss.
Auction theory is a branch of applied economics that deals with how bidders act in auctions and researches how the features of auctions incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The confluence of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues that can lead to market failure. The design of these rulesets encourages optimal bidding strategies in a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson "for improvements to auction theory and inventions of new auction formats."
A bilateral monopoly is a market structure consisting of both a monopoly and a monopsony.
In microeconomics, search theory studies buyers or sellers who cannot instantly find a trading partner, and must therefore search for a partner prior to transacting. It involves determining the best approach to use when looking for a specific item or person in a sizable, uncharted environment. The goal of the theory is to determine the best search strategy, one that maximises the chance of finding the target while minimising search-related expenses.
Bargaining power is the relative ability of parties in an argumentative situation to exert influence over each other in order to achieve favourable terms in an agreement. This power is derived from various factors such as each party’s alternatives to the current deal, the value of what is being negotiated, and the urgency of reaching an agreement. A party's bargaining power can significantly shift the outcome of negotiations, leading to more advantageous positions for those who possess greater leverage.
Cooperative bargaining is a process in which two people decide how to share a surplus that they can jointly generate. In many cases, the surplus created by the two players can be shared in many ways, forcing the players to negotiate which division of payoffs to choose. Such surplus-sharing problems are faced by management and labor in the division of a firm's profit, by trade partners in the specification of the terms of trade, and more.
A sequential auction is an auction in which several items are sold, one after the other, to the same group of potential buyers. In a sequential first-price auction (SAFP), each individual item is sold using a first price auction, while in a sequential second-price auction (SASP), each individual item is sold using a second price auction.
The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in auctions.
A strategic bankruptcy problem is a variant of a bankruptcy problem in which claimants may act strategically, that is, they may manipulate their claims or their behavior. There are various kinds of strategic bankruptcy problems, differing in the assumptions about the possible ways in which claimants may manipulate.