Serial relation

Last updated

In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation.

Contents

Bertrand Russell used serial relations in The Principles of Mathematics [1] (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. [2]

A serial relation R is an endorelation on a set U. As stated by Russell, where the universal and existential quantifiers refer to U. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest.

For a relation R, let {y: xRy} denote the "successor neighborhood" of x. A serial relation can be equivalently characterized as a relation for which every element has a non-empty successor neighborhood. Similarly, an inverse serial relation is a relation in which every element has non-empty "predecessor neighborhood". [3]

In normal modal logic, the extension of fundamental axiom set K by the serial property results in axiom set D. [4]

Russell's series

Relations are used to develop series in The Principles of Mathematics. The prototype is Peano's successor function as a one-one relation on the natural numbers. Russell's series may be finite or generated by a relation giving cyclic order. In that case, the point-pair separation relation is used for description. To define a progression, he requires the generating relation to be a connected relation. Then ordinal numbers are derived from progressions, the finite ones are finite ordinals. [1] :Chapter 28: Progressions and ordinal numbers Distinguishing open and closed series [1] :234 results in four total orders: finite, one end, no end and open, and no end and closed. [1] :202

Contrary to other writers, Russell admits negative ordinals. For motivation, consider the scales of measurement using scientific notation, where a power of ten represents a decade of measure. Informally, this parameter corresponds to orders of magnitude used to quantify physical units. The parameter takes on negative as well as positive values.

Stretch

Russell adopted the term stretch from Meinong, who had contributed to the theory of distance. [5] Stretch refers to the intermediate terms between two points in a series, and the "number of terms measures the distance and divisibility of the whole." [1] :181 To explain Meinong, Russell refers to the Cayley–Klein metric, which uses stretch coordinates in anharmonic ratios which determine distance by using logarithm. [1] :255 [6]

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

<span class="mw-page-title-main">Natural number</span> Number used for counting

In mathematics, the natural numbers are the numbers 1, 2, 3, etc., possibly including 0 as well. Some definitions, including the standard ISO 80000-2, begin the natural numbers with 0, corresponding to the non-negative integers0, 1, 2, 3, ..., whereas others start with 1, corresponding to the positive integers1, 2, 3, ... Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers. In common language, particularly in primary school education, natural numbers may be called counting numbers to intuitively exclude the negative integers and zero, and also to contrast the discreteness of counting to the continuity of measurement—a hallmark characteristic of real numbers.

In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress.

<i>Principia Mathematica</i> Book on the foundations of mathematics (1910–13, 1925–27)

The Principia Mathematica is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925–1927, it appeared in a second edition with an important Introduction to the Second Edition, an Appendix A that replaced ✱9 and all-new Appendix B and Appendix C. PM was conceived as a sequel to Russell's 1903 The Principles of Mathematics, but as PM states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of Principles of Mathematics... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions."

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in Hilbert (1900), which include a second order completeness axiom.

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.

In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that – for some coherent meaning of 'logic' – mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or all of mathematics may be modelled in logic. Bertrand Russell and Alfred North Whitehead championed this programme, initiated by Gottlob Frege and subsequently developed by Richard Dedekind and Giuseppe Peano.

In set theory, several ways have been proposed to construct the natural numbers. These include the representation via von Neumann ordinals, commonly employed in axiomatic set theory, and a system based on equinumerosity that was proposed by Gottlob Frege and by Bertrand Russell.

In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930.

In mathematics, an element of a set is any one of the distinct objects that belong to that set.

In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician Dana Scott and the philosopher George Boolos.

General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.

<span class="mw-page-title-main">Relation (mathematics)</span> Relationship between two sets, defined by a set of ordered pairs

In mathematics, a relation on a set may, or may not, hold between two given members of the set. As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3, and likewise between 3 and 4, but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false. As another example, "is sister of" is a relation on the set of all people, it holds e.g. between Marie Curie and Bronisława Dłuska, and likewise vice versa. Set members may not be in relation "to a certain degree" – either they are in relation or they are not.

References

  1. 1 2 3 4 5 6 Russell, Bertrand. Principles of mathematics. ISBN   978-1-136-76573-5. OCLC   1203009858.
  2. B. A. Bernstein (1926) "On the Serial Relations in Boolean Algebras", Bulletin of the American Mathematical Society 32(5): 523,524
  3. Yao, Y. (2004). "Semantics of Fuzzy Sets in Rough Set Theory". Transactions on Rough Sets II. Lecture Notes in Computer Science. Vol. 3135. p. 309. doi:10.1007/978-3-540-27778-1_15. ISBN   978-3-540-23990-1.
  4. James Garson (2013) Modal Logic for Philosophers, chapter 11: Relationships between modal logics, figure 11.1 page 220, Cambridge University Press doi : 10.1017/CBO97811393421117.014
  5. Alexius Meinong (1896) Uber die Bedeutung der Weberische Gesetze
  6. Russell (1897) An Essay on the Foundations of Geometry