Sessility (motility)

Last updated
Generally sessile Hydra attached to a substrate Hydras (8).JPG
Generally sessile Hydra attached to a substrate

Sessility is the biological property of an animal describing its lack of a means of self-locomotion. Sessile animals for which natural motility is absent are normally immobile. This is distinct from the botanical concept of sessility, which refers to an organism or biological structure attached directly by its base without a stalk.

Contents

Sessile animals can move via external forces (such as water currents), but are usually permanently attached to something. Organisms such as corals lay down their own substrate from which they grow. Other animals organisms grow from a solid object, such as a rock, a dead tree trunk, or a human-made object such as a buoy or ship's hull. [1]

Mobility

Sessile animals typically have a motile phase in their development. Sponges have a motile larval stage and become sessile at maturity. Conversely, many jellyfish develop as sessile polyps early in their life cycle. In the case of the cochineal, it is in the nymph stage (also called the crawler stage) that the cochineal disperses. The juveniles move to a feeding spot and produce long wax filaments. Later they move to the edge of the cactus pad where the wind catches the wax filaments and carries the tiny larval cochineals to a new host.

Reproduction

Many sessile animals, including sponges, corals and hydra, are capable of asexual reproduction in situ by the process of budding. Sessile organisms such as barnacles and tunicates need some mechanism to move their young into new territory. This is why the most widely accepted theory explaining the evolution of a larval stage is the need for long-distance dispersal ability. Biologist Wayne Sousa's 1979 study in intertidal disturbance added support for the theory of nonequilibrium community structure, "suggesting that open space is necessary for the maintenance of diversity in most communities of sessile organisms". [2]

Clumping

Blue mussels, Mytilus edulis, are sessile and exhibit clumping Blue mussel clump.jpg
Blue mussels, Mytilus edulis, are sessile and exhibit clumping

Clumping is a behavior in sessile organisms in which individuals of a particular species group closely to one another for beneficial purposes, as can be seen in coral reefs and cochineal populations. This allows for faster reproduction and better protection from predators. [3]

Predominance in coastal environments

The circalittoral zone of coastal environments and biomes are dominated by sessile organisms such as oysters. Carbonate platforms grow due to the buildup of skeletal remains of sessile organisms, usually microorganisms, which induce carbonate precipitation through their metabolism.

Botanical sessility

In anatomy and botany, sessility refers to an organism or biological structure that has no peduncle or stalk. A sessile structure has no stalk.

See: peduncle (anatomy), peduncle (botany) and sessility (botany).

See also

Related Research Articles

<span class="mw-page-title-main">Outline of biology</span>

Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in fresh water and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Invertebrate</span> Animals without a vertebral column

Invertebrates is an umbrella term describing animals that neither develop nor retain a vertebral column, which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordate subphylum Vertebrata, i.e. vertebrates. Well-known phyla of invertebrates include arthropods, mollusks, annelids, echinoderms, flatworms, cnidarians, and sponges.

<span class="mw-page-title-main">Echinoderm</span> Exclusively marine phylum of animals with generally 5-point radial symmetry

An echinoderm is any deuterostomal animal of the phylum Echinodermata, which includes starfish, brittle stars, sea urchins, sand dollars and sea cucumbers, as well as the sessile sea lilies or "stone lilies". While bilaterally symmetrical as larvae, as adults echinoderms are recognisable by their usually five-pointed radial symmetry, and are found on the sea bed at every ocean depth from the intertidal zone to the abyssal zone. The phylum contains about 7,600 living species, making it the second-largest group of deuterostomes after the chordates, as well as the largest marine-only phylum. The first definitive echinoderms appeared near the start of the Cambrian.

<span class="mw-page-title-main">Archaeocyatha</span> Class of sponges

Archaeocyatha is a taxon of extinct, sessile, reef-building marine sponges that lived in warm tropical and subtropical waters during the Cambrian Period. It is believed that the centre of the Archaeocyatha origin is now located in East Siberia, where they are first known from the beginning of the Tommotian Age of the Cambrian, 525 million years ago (mya). In other regions of the world, they appeared much later, during the Atdabanian, and quickly diversified into over a hundred families.

<span class="mw-page-title-main">Sponge</span> Animals of the phylum Porifera

Sponges or sea sponges are members of the metazoan phylum Porifera, a basal animal clade and a sister taxon of the diploblasts. They are sessile filter feeders that are bound to the seabed, and are one of the most ancient members of macrobenthos, with many historical species being important reef-building organisms.

<span class="mw-page-title-main">Sclerite</span> Hardened body part

A sclerite is a hardened body part. In various branches of biology the term is applied to various structures, but not as a rule to vertebrate anatomical features such as bones and teeth. Instead it refers most commonly to the hardened parts of arthropod exoskeletons and the internal spicules of invertebrates such as certain sponges and soft corals. In paleontology, a scleritome is the complete set of sclerites of an organism, often all that is known from fossil invertebrates.

<span class="mw-page-title-main">Reef</span> Shoal of rock, coral, or other material lying beneath the surface of water

A reef is a ridge or shoal of rock, coral, or similar relatively stable material lying beneath the surface of a natural body of water. Many reefs result from natural, abiotic (non-living) processes such as deposition of sand or wave erosion planing down rock outcrops. However, reefs such as the coral reefs of tropical waters are formed by biotic (living) processes, dominated by corals and coralline algae. Artificial reefs, such as shipwrecks and other man-made underwater structures, may occur intentionally or as the result of an accident. These are sometimes designed to increase the physical complexity of featureless sand bottoms to attract a more diverse range of organisms. Reefs are often quite near to the surface, but not all definitions require this.

<span class="mw-page-title-main">Zooxanthellae</span> Dinoflagellates in symbiosis with coral, jellyfish and nudibranchs

Zooxanthellae is a colloquial term for single-celled dinoflagellates that are able to live in symbiosis with diverse marine invertebrates including demosponges, corals, jellyfish, and nudibranchs. Most known zooxanthellae are in the genus Symbiodinium, but some are known from the genus Amphidinium, and other taxa, as yet unidentified, may have similar endosymbiont affinities. The true Zooxanthella K.brandt is a mutualist of the radiolarian Collozoum inerme and systematically placed in Peridiniales. Another group of unicellular eukaryotes that partake in similar endosymbiotic relationships in both marine and freshwater habitats are green algae zoochlorellae.

<span class="mw-page-title-main">Biological dispersal</span> Movement of individuals from their birth site to a breeding site

Biological dispersal refers to both the movement of individuals from their birth site to their breeding site and the movement from one breeding site to another . Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, and settlement. There are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences, both for evolutionary strategies at a species level and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines the expansion range.

Fragmentation in multicellular or colonial organisms is a form of asexual reproduction or cloning, where an organism is split into fragments upon maturation and the spilted part becomes the new individual.

<i>Spongilla</i> Genus of sponges

Spongilla is a genus of freshwater sponges containing over 200 different species. Spongilla was first publicly recognized in 1696 by Leonard Plukenet and can be found in lakes, ponds and slow streams.Spongilla have a leuconoid body form with a skeleton composed of siliceous spicules. They are sessile organisms, attaching themselves to hard substrate like rocks, logs and sometimes to ground. Using their ostia and osculum these sponges filter the water for various small aquatic organisms such as protozoans, bacteria, and other free-floating pond life. Sponges of the genus Spongilla partake in symbiotic relationships with green algae, zoochlorellae. The symbiotic zoochlorellae give the sponges a green appearance and without them they would appear white.

Wayne Philip Sousa is a well-known biologist and ecologist. He works at the University of California, Berkeley as a professor and chair of the Department of Integrative Biology. His research in community ecology has been in two broad areas: the role of disturbance in structuring natural communities and the ecology of host-parasite interactions. In his lab, students work alongside Sousa on research topics such as mangrove forest gap regeneration, the demographics of intertidal algae in California, plant invasions in coastal California grasslands, and rainforest seedlings in Ecuador.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebral column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

A peduncle is an elongated stalk of tissue. Sessility is the state of not having a peduncle; a sessile mass or structure lacks a stalk.

<i>Leptogorgia virgulata</i> Species of coral

Leptogorgia virgulata, commonly known as the sea whip or colorful sea whip, is a species of soft coral in the family Gorgoniidae.

<i>Pollicipes polymerus</i> Species of crustacean

Pollicipes polymerus, commonly known as the gooseneck barnacle or leaf barnacle, is a species of stalked barnacle. It is found, often in great numbers, on rocky shores on the Pacific coasts of North America.

<i>Capitulum mitella</i> Species of barnacle

Capitulum is a monotypic genus of sessile marine stalked barnacles. Capitulum mitella is the only species in the genus. It is commonly known as the Japanese goose barnacle or kamenote and is found on rocky shores in the Indo-Pacific region.

<i>Pagurus dalli</i> Species of crustacean

Pagurus dalli, commonly known as the whiteknee hermit or whiteknee hermit crab, is a species of hermit crab in the family Paguridae. It is found in the northeastern Pacific Ocean at depths down to about 276 m (900 ft). It usually lives in a mutualistic symbiosis with a sponge, or sometimes a hydroid.

<i>Megasiphon</i> Extinct genus of tunicate

Megasiphon thylakos is an extinct species of tunicate that lived in the Middle Cambrian 500 million years ago.

References

  1. Pechenik, Jan (2016). Biology of the Invertebrates. ISBN   9781497006515.
  2. Sousa, Wayne P. (1979). "Disturbance in Marine Intertidal Boulder Fields: The Nonequilibrium Maintenance of Species Diversity". Ecology. 60 (6): 1225–1239. doi:10.2307/1936969.
  3. James H. Thorp; Alan P. Covich (2001). Ecology and Classification of North American Freshwater Invertebrates. Academic Press. p. 213. ISBN   0-12-690647-5.