Shade tolerance

Last updated
Eastern Hemlock is a shade-tolerant tree. Tsuga canadensis2.jpg
Eastern Hemlock is a shade-tolerant tree.

In ecology, shade tolerance is a plant's ability to tolerate low light levels. The term is also used in horticulture and landscaping, although in this context its use is sometimes imprecise, especially in labeling of plants for sale in commercial nurseries.[ citation needed ]

Contents

Shade tolerance is a complex, multi-faceted property of plants. Different plant species exhibit different adaptations to shade, and a particular plant can exhibit varying degrees of shade tolerance, or even of requirement for light, depending on its history or stage of development.

Basic concepts

Except for some parasitic plants, all land plants need sunlight to survive. [1] However, in general, more sunlight does not always make it easier for plants to survive. In direct sunlight, plants face desiccation and exposure to UV rays, and must expend energy producing pigments to block UV light, and waxy coatings to prevent water loss.

Plants adapted to shade have the ability to use far-red light (about 730 nm) more effectively than plants adapted to full sunlight. Most red light gets absorbed by the shade-intolerant canopy plants, but more of the far-red light penetrates the canopy, reaching the understorey. The shade-tolerant plants found here are capable of photosynthesis using light at such wavelengths.[ citation needed ]

The situation with respect to nutrients is often different in shade and sun. Most shade is due to the presence of a canopy of other plants, and this is usually associated with a completely different environment—richer in soil nutrients—than sunny areas.

Shade-tolerant plants are thus adapted to be efficient energy-users. In simple terms, shade-tolerant plants grow broader, thinner leaves to catch more sunlight relative to the cost of producing the leaf. Shade-tolerant plants are also usually adapted to make more use of soil nutrients than shade-intolerant plants. [2]

A distinction may be made between "shade-tolerant" plants and "shade-loving" or sciophilous plants. Sciophilous plants are dependent on a degree of shading that would eventually kill most other plants, or significantly stunt their growth.[ citation needed ]

Plants adaptation to the changing light

Plants applied multilevel adaptations to the changing light environment from the systemic level to the molecular level.

Seasonal colour changes in sedum adolphii-a response to change in amount of daylight Seasonal changes in sedum.jpg
Seasonal colour changes in sedum adolphii-a response to change in amount of daylight

Leaf movement

Various types of leaf movement for adaptation to changing light environment have been identified: developmental, passive and active. [3]

Chloroplast movement

Chloroplast movement is one of the plant adaptations to the changing light at the molecular level. [5] A study suggested that chloroplast movement shared the same photoreceptor with leaf movement as they showed similar action spectra. [6] It is fast adaptation, occurring within minutes but limited as it can only reduced 10–20% of the light absorption during high light. [6] Limitations of chloroplast movement could be the presence of other large organelles like vacuole that restrict the chloroplast passage to the desired side of a cell. On top of that, chloroplast movement might not be efficient as natural light tends to scatter in all directions.[ citation needed ]

Photosystem modulation

Photosystem modulation is an example of a long term light adaptation or acclimation that usually occurs on the genetic level; transcriptional, translational and post-translational. [7] Plants grown under high light intensity usually have smaller antenna compared to plants grown under low light. [8] A study found that the acclimative modulation of PSII antenna size only involves the outer light harvesting complexes of PSII (LHC-PSII) caused by the proteolysis of its apoprotein. [9]

The response towards higher light took up to two days upon enzyme expression and activation. Reduction of outer LHC-II by half through proteolysis took less than a day once activated. By changing the PS numbers, plant are able to adapt to the changing light of the environment. To compensate for the reduction of the red light usually encountered by the plant grown under canopy, they possessed higher PS-II to PS-I ratio compared to the plant grown under the higher light. [10] However the factors involved in the mechanism are not well understood. Study suggested the protein phosphorylation including LHC-II is an important pathway for signal transduction in light acclimatization.

Herbaceous plants

In temperate zones, many wildflowers and non-woody plants persist in the closed canopy of a forest by leafing out early in the spring, before the trees leaf out. This is partly possible because the ground tends to be more sheltered and thus the plants are less susceptible to frost, during the period of time when it would still be hazardous for trees to leaf out.[ citation needed ] As an extreme example of this, winter annuals sprout in the fall, grow through the winter, and flower and die in the spring.

Just like with trees, shade tolerance in herbaceous plants is diverse. Some early-leafing out plants will persist after the canopy leafs out, whereas others rapidly die back. In many species, whether or not this happens depends on the environment, such as water supply and sunlight levels. Hydrangea hirta is a shade-tolerant deciduous shrub found in Japan.[ citation needed ]

Although most plants grow towards light, many tropical vines, such as Monstera deliciosa and a number of other members of the family Araceae, such as members of the genus Philodendron , initially grow away from light; this is a dramatic example of sciophilous growth, which helps them locate a tree trunk, which they then climb to regions of brighter light. The upper shoots and leaves of such a Philodendron grow as typical light-loving, photophilic plants once they break out into full sunshine.[ citation needed ]

Trees

In forests where rainfall is plentiful and water is not the limiting factor to growth, shade tolerance is one of the most important factors characterizing tree species. However, different species of trees exhibit different adaptations to shade.[ citation needed ]

The eastern hemlock, considered the most shade-tolerant of all North American tree species, is able to germinate, persist, and even grow under a completely closed canopy.[ citation needed ] Hemlocks also exhibit the ability to transfer energy to nearby trees through their root system.[ citation needed ] In contrast, the Sugar Maple, also considered to be highly shade-tolerant, will germinate under a closed canopy and persist as an understory species, but only grows to full size when a gap is generated.

Shade-intolerant species such as willow and aspen cannot sprout under a closed canopy. Shade-intolerant species often grow in wetlands, along waterways, or in disturbed areas, where there is adequate access to direct sunlight.[ citation needed ]

In addition to being able to compete in conditions of low light intensity, shade-bearing species, especially trees, are able to withstand relatively low daytime temperatures compared with the open, and above all high root competition especially with subordinate vegetation.[ citation needed ] It is very difficult to separate the relative importance of light and below ground competition, and in practical terms they are inextricably linked.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a biological process used by many cellular organisms to convert light energy into chemical energy, which is stored in organic compounds that can later be metabolized through cellular respiration to fuel the organism's activities. The term usually refers to oxygenic photosynthesis, where oxygen is produced as a byproduct, and some of the chemical energy produced is stored in carbohydrate molecules such as sugars, starch and cellulose, which are synthesized from endergonic reaction of carbon dioxide with water. Most plants, algae and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Shade (shadow)</span>

Shade is the blocking of sunlight by any object, and also the shadow created by that object. Shade also consists of the colors grey, black, white, etc. It may refer to blocking of sunlight by a roof, a tree, an umbrella, a window shade or blind, wall, curtains, or other objects.

<span class="mw-page-title-main">Understory</span> Layer of plant life growing above the shrub layer and below the canopy

In forestry and ecology, understory, or understorey, also known as underbrush or undergrowth, includes plant life growing beneath the forest canopy without penetrating it to any great extent, but above the forest floor. Only a small percentage of light penetrates the canopy so understory vegetation is generally shade-tolerant. The understory typically consists of trees stunted through lack of light, other small trees with low light requirements, saplings, shrubs, vines and undergrowth. Small trees such as holly and dogwood are understory specialists.

C<sub>4</sub> carbon fixation Photosynthetic process in some plants

C4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack that some plants, when supplied with 14CO2, incorporate the 14C label into four-carbon molecules first.

<span class="mw-page-title-main">Photosystem</span> Structural units of protein involved in photosynthesis

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

<span class="mw-page-title-main">Photosystem II</span> First protein complex in light-dependent reactions of oxygenic photosynthesis

Photosystem II is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria. Within the photosystem, enzymes capture photons of light to energize electrons that are then transferred through a variety of coenzymes and cofactors to reduce plastoquinone to plastoquinol. The energized electrons are replaced by oxidizing water to form hydrogen ions and molecular oxygen.

Far-red light is a range of light at the extreme red end of the visible spectrum, just before infra-red light. Usually regarded as the region between 700 and 750 nm wavelength, it is dimly visible to human eyes. It is largely reflected or transmitted by plants because of the absorbance spectrum of chlorophyll, and it is perceived by the plant photoreceptor phytochrome. However, some organisms can use it as a source of energy in photosynthesis. Far-red light also is used for vision by certain organisms such as some species of deep-sea fishes and mantis shrimp.

Chlorophyll <i>b</i> Chemical compound

Chlorophyll b is a form of chlorophyll. Chlorophyll b helps in photosynthesis by absorbing light energy. It is more soluble than chlorophyll a in polar solvents because of its carbonyl group. Its color is green, and it primarily absorbs blue light.

Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.

Ecophysiology, environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.

<span class="mw-page-title-main">Photoinhibition</span>

Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as light-induced damage to PSII. In living organisms, photoinhibited PSII centres are continuously repaired via degradation and synthesis of the D1 protein of the photosynthetic reaction center of PSII. Photoinhibition is also used in a wider sense, as dynamic photoinhibition, to describe all reactions that decrease the efficiency of photosynthesis when plants are exposed to light.

Poikilohydry is the lack of ability to maintain and/or regulate water content to achieve homeostasis of cells and tissue connected with quick equilibration of cell/tissue water content to that of the environment. The term is derived from Ancient Greek ποικίλος ..

A xerophyte is a species of plant that has adaptations to survive in an environment with little liquid water. Examples are typically desert regions like the Sahara, and places in the Alps or the Arctic. Popular examples of xerophytes are cacti, pineapple and some Gymnosperm plants.

<span class="mw-page-title-main">Light-dependent reactions</span> Photosynthetic reactions

Light-dependent reactions is jargon for certain photochemical reactions that are involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions, the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI),

<span class="mw-page-title-main">Anoxygenic photosynthesis</span> Process used by obligate anaerobes

Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used and the byproduct generated.

<span class="mw-page-title-main">Chlorophyll fluorescence</span> Light re-emitted by chlorophyll molecules during return from excited to non-excited states

Chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from excited to non-excited states. It is used as an indicator of photosynthetic energy conversion in plants, algae and bacteria. Excited chlorophyll dissipates the absorbed light energy by driving photosynthesis, as heat in non-photochemical quenching or by emission as fluorescence radiation. As these processes are complementary processes, the analysis of chlorophyll fluorescence is an important tool in plant research with a wide spectrum of applications.

<span class="mw-page-title-main">Plant stress measurement</span>

Plant stress measurement is the quantification of environmental effects on plant health. When plants are subjected to less than ideal growing conditions, they are considered to be under stress. Stress factors can affect growth, survival and crop yields. Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors, and of other stress factors that are important in particular situations. Plant stress measurement usually focuses on taking measurements from living plants. It can involve visual assessments of plant vitality, however, more recently the focus has moved to the use of instruments and protocols that reveal the response of particular processes within the plant

<span class="mw-page-title-main">Ycf9 protein domain</span> Plastid protein involved in photosynthesis

In molecular biology, the PsbZ (Ycf9) is a protein domain, which is low in molecular weight. It is a transmembrane protein and therefore is located in the thylakoid membrane of chloroplasts in cyanobacteria and plants. More specifically, it is located in Photosystem II (PSII) and in the light-harvesting complex II (LHCII). Ycf9 acts as a structural linker, that stabilises the PSII-LHCII supercomplexes. Moreover, the supercomplex fails to form in PsbZ-deficient mutants, providing further evidence to suggest Ycf9's role as a structural linker. This may be caused by a marked decrease in two LHCII antenna proteins, CP26 and CP29, found in PsbZ-deficient mutants, which result in structural changes, as well as functional modifications in PSII.

<span class="mw-page-title-main">Chlororespiration</span>

Chlororespiration is a respiratory process that takes place within plants. Inside plant cells there is an organelle called the chloroplast which is surrounded by the thylakoid membrane. This membrane contains an enzyme called NAD(P)H dehydrogenase which transfers electrons in a linear chain to oxygen molecules. This electron transport chain (ETC) within the chloroplast also interacts with those in the mitochondria where respiration takes place. Photosynthesis is also a process that Chlororespiration interacts with. If photosynthesis is inhibited by environmental stressors like water deficit, increased heat, and/or increased/decreased light exposure, or even chilling stress then chlororespiration is one of the crucial ways that plants use to compensate for chemical energy synthesis.

Photoautotrophs are organisms that use light energy and inorganic carbon to produce organic materials. Eukaryotic photoautotrophs absorb energy through the chlorophyll molecules in their chloroplasts while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls present in free-floating thylakoids in their cytoplasm. All known photoautotrophs perform photosynthesis. Examples include plants, algae, and cyanobacteria.

References

  1. "Can plants grow without photosynthesis?". UCSB Science Line. Retrieved April 3, 2015.
  2. Walters, Michael B.; Reich, Peter B. (July 2000). "SEED SIZE, NITROGEN SUPPLY, AND GROWTH RATE AFFECT TREE SEEDLING SURVIVAL IN DEEP SHADE". Ecology. 81 (7): 1887–1901. doi:10.1890/0012-9658(2000)081[1887:SSNSAG]2.0.CO;2. ISSN   0012-9658.
  3. Commun Integr Biol. January–February 2009; 2(1): 50–55
  4. Koller D (1990). "Light-driven leaf movements". Plant, Cell & Environment. 13 (7): 615–632. doi:10.1111/j.1365-3040.1990.tb01079.x.
  5. Chow WS, Anderson JM, Hope AB (1988). "Variable stoichiometries of photosystem-II to photosystem-I reaction centers". Photosynth Res. 17 (3): 277–281. doi:10.1007/BF00035454. PMID   24429774. S2CID   31055842.
  6. 1 2 Brugnoli E, Bjorkman O (1992). "Growth of cotton under continuous salinity stress—influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy". Planta. 187 (3): 335–347. doi:10.1007/BF00195657. PMID   24178074. S2CID   23161525.
  7. Kloppstech K (1997). "Light regulation of photosynthetic genes". Physiol Plant. 100 (4): 739–747. doi:10.1111/j.1399-3054.1997.tb00001.x.
  8. Anderson JM, Chow WS, Park YI (1995). "The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues". Photosynth Res. 46 (1–2): 129–139. doi:10.1007/BF00020423. PMID   24301575. S2CID   21254330.
  9. Andersson B, Aro EM (1997). "Proteolytic activities and proteases of plant chloroplasts". Physiol Plant. 100 (4): 780–793. doi:10.1111/j.1399-3054.1997.tb00005.x.
  10. Anderson JM, Osmond B (2001). Kyle DJ, Osmond B, Arntzen CJ (eds.). "Sun-shade responses: Compromises between acclimation and photoinhibition". Photoinhibition. Amsterdam: Elsevier: 1–38.