Shock tube

Last updated
For the pyrotechnic initiator, see Shock tube detonator
Shock tube test apparatus at the University of Ottawa, Canada. Shock tube.JPG
Shock tube test apparatus at the University of Ottawa, Canada.
Remnants of spent aluminium foil being removed by student. U of ottawa shock tube 14b.png
Remnants of spent aluminium foil being removed by student.
An idealized shock tube. The plot shows different waves which are formed in the tube once the diaphragm is ruptured. Shock tube.png
An idealized shock tube. The plot shows different waves which are formed in the tube once the diaphragm is ruptured.

The shock tube is an instrument used to replicate and direct blast waves at a sensor or a model in order to simulate actual explosions and their effects, usually on a smaller scale. Shock tubes (and related impulse facilities such as shock tunnels, expansion tubes, and expansion tunnels) can also be used to study aerodynamic flow under a wide range of temperatures and pressures that are difficult to obtain in other types of testing facilities. Shock tubes are also used to investigate compressible flow phenomena and gas phase combustion reactions. More recently, shock tubes have been used in biomedical research to study how biological specimens are affected by blast waves. [1] [2]

Contents

A shock wave inside a shock tube may be generated by a small explosion (blast-driven) or by the buildup of high pressures which cause diaphragm(s) to burst and a shock wave to propagate down the shock tube (compressed-gas driven).

History

An early study of compression driven shock tubes was published in 1899 by French scientist Paul Vieille, though the apparatus was not called a shock tube until the 1940s. [3] In the 1930s it was rediscovered by W. H. Payman and WCF Shepherd of English Safety in Mines Research Board in order to study underground methane explosions, but the term was not coined until Bleakney et al. publication of 1949. [4] [5]

In the 1940s, interest revived and shock tubes were increasingly used to study the flow of fast moving gases over objects, the chemistry and physical dynamics of gas phase combustion reactions. The modern version of the shock tube was developed during WWII at Princeton University by a group led by Walker Bleakney, [6] who published overviews of their studies in 1946 and 1949.

In 1966, Duff and Blackwell [7] described a type of shock tube driven by high explosives. These ranged in diameter from 0.6 to 2 m and in length from 3 m to 15 m. The tubes themselves were constructed of low-cost materials and produced shock waves with peak dynamic pressures of 7 MPa to 200 MPa and durations of a few hundred microseconds to several milliseconds.

Both compression-driven and blast-driven shock tubes are currently used for scientific as well as military applications. Compressed-gas driven shock tubes are more easily obtained and maintained in laboratory conditions; however, the shape of the pressure wave is different from a blast wave in some important respects and may not be suitable for some applications. Blast-driven shock tubes generate pressure waves that are more realistic to free-field blast waves. However, they require facilities and expert personnel for handling high explosives. Also, in addition to the initial pressure wave, a jet effect caused by the expansion of compressed gases (compression-driven) or production of rapidly expanding gases (blast-driven) follows and may transfer momentum to a sample after the blast wave has passed. More recently, laboratory scale shock tubes driven by fuel-air mixtures have been developed that produce realistic blast waves and can be operated in more ordinary laboratory facilities. [8] Because the molar volume of gas is much less, the jet effect is a fraction of that for compressed-gas driven shock tubes. To date, the smaller size and lower peak pressures generated by these shock tubes make them most useful for preliminary, nondestructive testing of materials, validation of measurement equipment such as high speed pressure transducers, and for biomedical research as well as military applications.

Operation

Aluminium foil used as a diaphragm between shock tube pipe segments. U of ottawa shock tube 32.jpg
Aluminium foil used as a diaphragm between shock tube pipe segments.

A simple shock tube is a tube, rectangular or circular in cross-section, usually constructed of metal, in which a gas at low pressure and a gas at high pressure are separated using some form of diaphragm. See, for instance, texts by Soloukhin, Gaydon and Hurle, and Bradley. [9] [10] [11] The diaphragm suddenly bursts open under predetermined conditions to produce a wave propagating through the low pressure section. The shock that eventually forms increases the temperature and pressure of the test gas and induces a flow in the direction of the shock wave. Observations can be made in the flow behind the incident front or take advantage of the longer testing times and vastly enhanced pressures and temperatures behind the reflected wave.

The low-pressure gas, referred to as the driven gas, is subjected to the shock wave. The high pressure gas is known as the driver gas. The corresponding sections of the tube are likewise called the driver and driven sections. The driver gas is usually chosen to have a low molecular weight, (e.g., helium or hydrogen) for safety reasons, with high speed of sound, but may be slightly diluted to 'tailor' interface conditions across the shock. To obtain the strongest shocks the pressure of the driven gas is well below atmospheric pressure (a partial vacuum is induced in the driven section before detonation).

The test begins with the bursting of the diaphragm. [12] Several methods are commonly used to burst the diaphragm.

The bursting diaphragm produces a series of pressure waves, each increasing the speed of sound behind them, so that they compress into a shock propagating through the driven gas. This shock wave increases the temperature and pressure of the driven gas and induces a flow in the direction of the shock wave but at lower velocity than the lead wave. Simultaneously, a rarefaction wave, often referred to as the Prandtl-Meyer wave, travels back in to the driver gas.

The interface, across which a limited degree of mixing occurs, separates driven and driver gases is referred to as the contact surface and follows, at a lower velocity, the lead wave.

A 'Chemical Shock Tube' involves separating driver and driven gases by a pair of diaphragms designed to fail after pre-determined delays with an end 'dump tank' of greatly increased cross-section. This allows an extreme rapid reduction (quench) in temperature of the heated gases.

Applications

In addition to measurements of rates of chemical kinetics shock tubes have been used to measure dissociation energies and molecular relaxation rates [14] [15] [16] [17] they have been used in aerodynamic tests. The fluid flow in the driven gas can be used much as a wind tunnel, allowing higher temperatures and pressures therein [18] replicating conditions in the turbine sections of jet engines. However, test times are limited to a few milliseconds, either by the arrival of the contact surface or the reflected shock wave.

They have been further developed into shock tunnels, with an added nozzle and dump tank. The resultant high temperature hypersonic flow can be used to simulate atmospheric re-entry of spacecraft or hypersonic craft, again with limited testing times. [19]

Shock tubes have been developed in a wide range of sizes. The size and method of producing the shock wave determine the peak and duration of the pressure wave it produces. Thus, shock tubes can be used as a tool used to both create and direct blast waves at a sensor or an object in order to imitate actual explosions and the damage that they cause on a smaller scale, provided that such explosions do not involve elevated temperatures and shrapnel or flying debris. Results from shock tube experiments can be used to develop and validate numerical model of the response of a material or object to an ambient blast wave without shrapnel or flying debris. Shock tubes can be used to experimentally determine which materials and designs would be best suited to the job of attenuating ambient blast waves without shrapnel or flying debris. The results can then be incorporated into designs to protect structures and people that might be exposed to an ambient blast wave without shrapnel or flying debris. Shock tubes are also used in biomedical research to find out how biological tissues are affected by blast waves.

There are alternatives to the classical shock tube; for laboratory experiments at very high pressure, shock waves can also be created using high-intensity short-pulse lasers. [20] [21] [22] [23]

See also

Related Research Articles

<span class="mw-page-title-main">Ramjet</span> Supersonic atmospheric jet engine

A ramjet is a form of airbreathing jet engine that uses the forward motion of the engine to take in air for combustion that produces jet thrust. Since it produces no thrust when stationary, ramjet-powered vehicles require an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to speeds of Mach 6.

<span class="mw-page-title-main">Shaped charge</span> Explosive with focused effect

A shaped charge is an explosive charge shaped to focus the effect of the explosive's energy. Different types of shaped charges are used for various purposes such as cutting and forming metal, initiating nuclear weapons, penetrating armor, or perforating wells in the oil and gas industry.

<span class="mw-page-title-main">Hypersonic speed</span> Speed that exceeds five times the speed of sound (Mach 5 and above)

In aerodynamics, a hypersonic speed is one that exceeds five times the speed of sound, often stated as starting at speeds of Mach 5 and above.

<span class="mw-page-title-main">Detonator</span> Small explosive device used to trigger a larger explosion

A detonator, sometimes called a blasting cap in the US, is a small sensitive device used to provoke a larger, more powerful but relatively insensitive secondary explosive of an explosive device used in commercial mining, excavation, demolition, etc.

<span class="mw-page-title-main">Shock wave</span> Propagating disturbance

In physics, a shock wave, or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.

A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave and the next. Theoretically, a PDE can operate from subsonic up to a hypersonic flight speed of roughly Mach 5. An ideal PDE design can have a thermodynamic efficiency higher than other designs like turbojets and turbofans because a detonation wave rapidly compresses the mixture and adds heat at constant volume. Consequently, moving parts like compressor spools are not necessarily required in the engine, which could significantly reduce overall weight and cost. PDEs have been considered for propulsion since 1940. Key issues for further development include fast and efficient mixing of the fuel and oxidizer, the prevention of autoignition, and integration with an inlet and nozzle.

<span class="mw-page-title-main">Detonation</span> Explosion at supersonic velocity

Detonation is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations propagate supersonically through shock waves with speeds in the range of 1 km/sec and differ from deflagrations which have subsonic flame speeds in the range of 1 m/sec. Detonation is an explosion of fuel-air mixture. Compared to deflagration, detonation doesn't need to have an external oxidizer. Oxidizers and fuel mix when deflagration occurs. Detonation is more destructive than deflagrations. In detonation, flame front travels through air-fuel faster than sound, while in deflagrations, flame front travels through air-fuel slower than sound

<span class="mw-page-title-main">Lightcraft</span>

The Lightcraft is a space- or air-vehicle driven by beam-powered propulsion, the energy source powering the craft being external. It was conceptualized by aerospace engineering professor Leik Myrabo at Rensselaer Polytechnic Institute in 1976, who developed the concept further with working prototypes, funded in the 1980s by the Strategic Defense Initiative organization, and the decade after by the Advanced Concept Division of the US Air Force AFRL, NASA's MFSC and the Lawrence Livermore National Laboratory.

<span class="mw-page-title-main">Oblique shock</span> Shock wave that is inclined with respect to the incident upstream flow direction

An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the incident upstream flow direction. It will occur when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic, compressible flow. Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur. While the upstream and downstream flow directions are unchanged across a normal shock, they are different for flow across an oblique shock wave.

<span class="mw-page-title-main">Ludwieg tube</span>

A Ludwieg tube is a cheap and efficient way of producing supersonic flow. Mach numbers up to 4 in air are easily obtained without any additional heating of the flow. With heating, Mach numbers of up to 11 can be reached.

<span class="mw-page-title-main">Hypersonic wind tunnel</span>

A hypersonic wind tunnel is designed to generate a hypersonic flow field in the working section, thus simulating the typical flow features of this flow regime - including compression shocks and pronounced boundary layer effects, entropy layer and viscous interaction zones and most importantly high total temperatures of the flow. The speed of these tunnels vary from Mach 5 to 15. The power requirement of a wind tunnel increases linearly with its cross section and flow density, but cubically with the test velocity required. Hence installation of a continuous, closed circuit wind tunnel remains a costly affair. The first continuous Mach 7-10 wind tunnel with 1x1 m test section was planned at Kochel am See, Germany during WW II and finally put into operation as 'Tunnel A' in the late 1950s at AEDC Tullahoma, TN, USA for an installed power of 57 MW. In view of these high facility demands, also intermittently operated experimental facilities like blow-down wind tunnels are designed and installed to simulate the hypersonic flow. A hypersonic wind tunnel comprises in flow direction the main components: heater/cooler arrangements, dryer, convergent/divergent nozzle, test section, second throat and diffuser. A blow-down wind tunnel has a low vacuum reservoir at the back end, while a continuously operated, closed circuit wind tunnel has a high power compressor installation instead. Since the temperature drops with the expanding flow, the air inside the test section has the chance of becoming liquefied. For that reason, preheating is particularly critical.

<span class="mw-page-title-main">Supersonic wind tunnel</span>

A supersonic wind tunnel is a wind tunnel that produces supersonic speeds (1.2<M<5) The Mach number and flow are determined by the nozzle geometry. The Reynolds number is varied by changing the density level. Therefore, a high pressure ratio is required. Apart from that, condensation of moisture or even gas liquefaction can occur if the static temperature becomes cold enough. This means that a supersonic wind tunnel usually needs a drying or a pre-heating facility. A supersonic wind tunnel has a large power demand, so most are designed for intermittent instead of continuous operation.

Argon flash, also known as argon bomb, argon flash bomb, argon candle, and argon light source, is a single-use source of very short and extremely bright flashes of light. The light is generated by a shock wave in argon or, less commonly, another noble gas. The shock wave is usually produced by an explosion. Argon flash devices are almost exclusively used for photographing explosions and shock waves.

The University of Texas at Arlington Aerodynamics Research Center (ARC) is a facility located in the southeast portion of the campus operated under the Department of Mechanical and Aerospace Engineering. It was established in 1986 as part of an expansion of UTA's College of Engineering. The ARC contributes to the vision of UTA and the University of Texas System to transform the university into a full-fledged research institution. It showcases the aerodynamics research activities at UTA and, in its history, has established itself as a unique facility at a university level. The wind tunnels and equipment in the facility were mainly built by scouting for and upgrading decommissioned equipment from the government and industry. Currently, Masters and Ph.D. students perform research in the fields of high-speed gas dynamics, propulsion, and Computational fluid dynamics among other projects related to aerodynamics.

<span class="mw-page-title-main">Potato cannon</span> Pipe-based cannon

A potato cannon is a pipe-based cannon that uses air pressure (pneumatic), or combustion of a flammable gas, to launch projectiles at high speeds. They are built to fire chunks of potato, as a hobby, or to fire other sorts of projectiles, for practical use. Projectiles or failing guns can be dangerous and result in life-threatening injuries, including cranial fractures, enucleation, and blindness if a person is hit.

The Voitenko compressor is a shaped charge adapted from its original purpose of piercing thick steel armour to the task of accelerating shock waves. It was proposed by Anatoly Emelyanovich Voitenko, a Soviet scientist, in 1964. It slightly resembles a wind tunnel.

In aeronautics, expansion and shock tunnels are aerodynamic testing facilities with a specific interest in high speeds and high temperature testing. Shock tunnels use steady flow nozzle expansion whereas expansion tunnels use unsteady expansion with higher enthalpy, or thermal energy. In both cases the gases are compressed and heated until the gases are released, expanding rapidly down the expansion chamber. The tunnels reach speeds from Mach 3 to Mach 30 to create testing conditions that simulate hypersonic to re-entry flight. These tunnels are used by military and government agencies to test hypersonic vehicles that undergo a variety of natural phenomenon that occur during hypersonic flight.

<span class="mw-page-title-main">Expansion tube</span>

An expansion tube is a type of impulse facility that is conceptually similar to a shock tube with a secondary diaphragm, an expansion section, a test section, and a dump tank where the endwall would be located in a shock tube. It is typically used to produce high enthalpy flows for high speed aerodynamic flow and aerodynamic heating and atmospheric reentry testing.

The ZND detonation model is a one-dimensional model for the process of detonation of an explosive. It was proposed during World War II independently by Y. B. Zel'dovich, John von Neumann, and Werner Döring, hence the name.

References

  1. Cernak, Ibolja (2010). "The importance of systemic response in the pathobiology of blast-induced neurotrauma". Frontiers in Neurology. 1: 151. doi: 10.3389/fneur.2010.00151 . PMC   3009449 . PMID   21206523.
  2. Chavko, Mikulas; Koller, Wayne A.; Prusaczyk, W. Keith; McCarron, Richard M. (2007). "Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain". Journal of Neuroscience Methods. 159 (2): 277–281. doi:10.1016/j.jneumeth.2006.07.018. PMID   16949675. S2CID   40961004.
  3. Henshall, BD. Some aspects of the use of shock tubes in aerodynamic research. Aeronautical Research Council Reports and Memoranda. R&M No. 3044, London, Her Majesty's Stationery Office, 1957.
  4. https://books.google.ge/books?id=PmuqCHDC3pwC
  5. Bleakney, Walker; Taub, A. H. (1 October 1949). "Interaction of Shock Waves". Reviews of Modern Physics. 21 (4): 584–605. doi:10.1103/RevModPhys.21.584.
  6. Emrich, R. J. (1 May 1996). "Walker Bleakney and the development of the shock tube at Princeton". Shock Waves. 5 (6): 327–339. doi:10.1007/BF02434008. ISSN   1432-2153.
  7. Duff, Russell E.; Blackwell, Arlyn N. (1966). "Explosive Driven Shock Tubes". Review of Scientific Instruments. 37 (5): 579–586. Bibcode:1966RScI...37..579D. doi: 10.1063/1.1720256 .
  8. Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W. (2012). "Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects". Review of Scientific Instruments. 83 (4): 045111–045111–7. arXiv: 1105.4670 . Bibcode:2012RScI...83d5111C. doi:10.1063/1.3702803. PMID   22559580. S2CID   205170036.
  9. Soloukhin, R.I., Shock Waves and Detonations in Gases, Mono Books, Baltimore, 1966.
  10. Gaydon, A.G., and Hurle, I.R., The Shock Tube in High Temperature Chemical Physics, Chapman and Hall, London, 1963.
  11. Bradley, J., Shock Waves in Chemistry and Physics, Chapman and Hall, London, 1962.
  12. Soloukhin, R.I., Shock Waves and Detonations in Gases, Mono Books, Baltimore, 1966.
  13. Bradley, J., Shock Waves in Chemistry and Physics, Chapman and Hall, London, 1962.
  14. Strehlow, 1967, Illinois University, Dept.Aero.and Astro. AAE Rept.76-2.
  15. Nettleton, 1977, Comb.and Flame, 28,3. and 2000, Shock Waves, 12,3.
  16. Chrystie, Robin; Nasir, Ehson F.; Farooq, Aamir (2014-12-01). "Ultra-fast and calibration-free temperature sensing in the intrapulse mode" (PDF). Optics Letters. 39 (23): 6620–6623. Bibcode:2014OptL...39.6620C. doi:10.1364/OL.39.006620. hdl: 10754/347273 . PMID   25490636.
  17. Gelfand; Frolov; Nettleton (1991). "Gaseous detonations—A selective review". Prog. Energy Comb. Sci. 17 (4): 327. doi:10.1016/0360-1285(91)90007-A.
  18. Liepmann, H. W. and Roshko, A., 1957, 'Elements of Gas Dynamics', Dover Publications. ISBN   0-486-41963-0
  19. Anderson, J. D., 1989, 'Hypersonic and High Temperature Gas Dynamics', AIAA. ISBN   1-56347-459-X
  20. Veeser, L. R.; Solem, J. C. (1978). "Studies of Laser-driven shock waves in aluminum". Physical Review Letters. 40 (21): 1391. Bibcode:1978PhRvL..40.1391V. doi:10.1103/PhysRevLett.40.1391.
  21. Solem, J. C.; Veeser, L. R. (1978). "Laser-driven shock wave studies". Proceedings of Symposium on the Behavior of Dense Media Under High Dynamic Pressure: 463–476. Los Alamos Scientific Laboratory Report LA-UR-78-1039.
  22. Veeser, L. R.; Solem, J. C.; Lieber, A. J. (1979). "Impedance‐match experiments using laser‐driven shock waves". Applied Physics Letters. 35 (10): 761–763. Bibcode:1979ApPhL..35..761V. doi:10.1063/1.90961.
  23. Veeser, L.; Lieber, A.; Solem, J. C. (1979). "Planar streak camera laser-driven shockwave studies". Proceedings of International Conference on Lasers '79. Orlando, FL, 17 December 17, 1979. LA-UR-79-3509; CONF-791220-3. (Los Alamos Scientific Lab., NM). 80: 45. Bibcode:1979STIN...8024618V. OSTI   5806611.{{cite journal}}: CS1 maint: location (link)