This article needs additional citations for verification .(November 2021) |
A hypersonic wind tunnel is designed to generate a hypersonic flow field in the working section, thus simulating the typical flow features of this flow regime - including compression shocks and pronounced boundary layer effects, entropy layer and viscous interaction zones and most importantly high total temperatures of the flow. The speed of these tunnels vary from Mach 5 to 15. The power requirement of a wind tunnel increases linearly with its cross section and flow density, but cubically with the test velocity required. Hence installation of a continuous, closed circuit wind tunnel remains a costly affair. The first continuous Mach 7-10 wind tunnel with 1x1 m test section was planned at Kochel am See, Germany during WW II [1] and finally put into operation as 'Tunnel A' in the late 1950s at AEDC Tullahoma, TN, USA for an installed power of 57 MW. In view of these high facility demands, also intermittently operated experimental facilities like blow-down wind tunnels are designed and installed to simulate the hypersonic flow. A hypersonic wind tunnel comprises in flow direction the main components: heater/cooler arrangements, dryer, convergent/divergent nozzle, test section, second throat and diffuser. A blow-down wind tunnel has a low vacuum reservoir at the back end, while a continuously operated, closed circuit wind tunnel has a high power compressor installation instead. Since the temperature drops with the expanding flow, the air inside the test section has the chance of becoming liquefied. For that reason, preheating is particularly critical (the nozzle may require cooling).
There are several technological problems in designing and constructing a hyper-velocity wind tunnel:
Simulations of a flow at 5.5 km/s, 45 km altitude would require tunnel temperatures of as much as 9000 K, and a pressure of 3 GPa.
One form of HWT is known as a Gun Tunnel or hot shot tunnel (up to M=27), which can be used for analysis of flows past ballistic missiles, space vehicles in atmospheric entry, and plasma physics or heat transfer at high temperatures. It runs intermittently, but has a very low running time (less than a second). The method of operation is based on a high temperature and pressurized gas (air or nitrogen) produced in an arc-chamber, and a near-vacuum in the remaining part of the tunnel. The arc-chamber can reach several MPa, while pressures in the vacuum chamber can be as low as 0.1 Pa. This means that the pressure ratios of these tunnels are in the order of 10 million. Also, the temperatures of the hot gas are up to 5000 K. The arc chamber is mounted in the gun barrel. The high pressure gas is separated from the vacuum by a diaphragm.
Prior to a test run commencing, a membrane separates the compressed air from the gun barrel breech. A rifle (or similar) is used to rupture the membrane. Compressed air rushes into the breech of the gun barrel, forcing a small projectile to accelerate rapidly down the barrel. Although the projectile is prevented from leaving the barrel, the air in front of the projectile emerges at hypersonic velocity into the working section. Naturally the duration of the test is extremely brief, so high speed instrumentation is required to get any meaningful data.
The Indian Space Research Organization (ISRO) commissioned three major facilities, namely a Hypersonic Wind Tunnel, a Shock Tunnel and a Plasma Tunnel at Vikram Sarabhai Space Center as part of its continuous and concerted efforts to minimize cost of access into space. This integrated facility was named as Satish Dhawan Wind Tunnel Complex as a tribute to Prof. Satish Dhawan, who has made very significant contributions in the field of wind tunnels and aerodynamics. ISRO Chairman A. S. Kiran Kumar said commissioning of such facilities would provide adequate data for design and development of current and future space transportation systems in India. [2]
Defence Research and Development Organisation (DRDO) commissioned an advanced Hypersonic Wind Tunnel (HWT) test facility at Dr APJ Abdul Kalam Missile Complex on 20 December 2020 as part of facility development programme for Hypersonic Technology Demonstrator Vehicle project. [3]
The MARHy Hypersonic low density Wind Tunnel, located at the ICARE [4] Laboratory in Orléans, France, is a research facility used extensively for fundamental and applied research of fluid dynamic phenomena in rarefied compressible flows, applied to space research. Its name is an acronym for Mach Adaptable Rarefied Hypersonic and the wind tunnel is recorded under this name under the European portal MERIL.
Wind tunnels are machines in which objects are held stationary inside a tube, and air is blown around it to study the interaction between the object and the moving air. They are used to test the aerodynamic effects of aircraft, rockets, cars, and buildings. Different wind tunnels range in size from less than a foot across, to over 100 feet (30 m), and can have air that moves at speeds from a light breeze to hypersonic velocities.
Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.
A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but where as a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.
Satish Dhawan was an Indian mathematician and aerospace engineer, widely regarded as the father of experimental fluid dynamics research in India. Born in Srinagar, Dhawan was educated in India and further on in United States. Dhawan was one of the most eminent researchers in the field of turbulence and boundary layers, leading the successful and indigenous development of the Indian space programme. He succeeded M. G. K. Menon, as the third chairman of the Indian Space Research Organisation (ISRO) in 1972. The second launch pad of ISRO, Satish Dhawan space centre is named after him. He is greatly regarded as the man behind A. P. J. Abdul Kalam.
The University of Tennessee Space Institute (UTSI) is a satellite campus of the University of Tennessee located near Tullahoma, Tennessee.
A supersonic wind tunnel is a wind tunnel that produces supersonic speeds (1.2<M<5) The Mach number and flow are determined by the nozzle geometry. The Reynolds number is varied by changing the density level. Therefore, a high pressure ratio is required. Apart from that, condensation of moisture or even gas liquefaction can occur if the static temperature becomes cold enough. This means that a supersonic wind tunnel usually needs a drying or a pre-heating facility. A supersonic wind tunnel has a large power demand, so most are designed for intermittent instead of continuous operation.
Scramjet programs refers to research and testing programs for the development of supersonic combustion ramjets, known as scramjets. This list provides a short overview of national and international collaborations, and civilian and military programs. The USA, Russia, India, and China (2014), have succeeded at developing scramjet technologies.
The Unitary Plan Wind Tunnel, located at the NASA Ames Research Center in Moffett Federal Airfield, Mountain View, California, United States, is a research facility used extensively to design and test new generations of aircraft, both commercial and military, as well as NASA space vehicles, including the Space Shuttle. The facility was completed in 1955 and is one of five facilities created after the 1949 Unitary Plan Act supporting aeronautics research.
The University of Texas at Arlington Aerodynamics Research Center (ARC) is a facility located in the southeast portion of the campus operated under the Department of Mechanical and Aerospace Engineering. It was established in 1986 as part of an expansion of UTA's College of Engineering. The ARC contributes to the vision of UTA and the University of Texas System to transform the university into a full-fledged research institution. It showcases the aerodynamics research activities at UTA and, in its history, has established itself as a unique facility at a university level. The wind tunnels and equipment in the facility were mainly built by scouting for and upgrading decommissioned equipment from the government and industry. Currently, Masters and Ph.D. students perform research in the fields of high-speed gas dynamics, propulsion, and Computational fluid dynamics among other projects related to aerodynamics.
A Trisonic Wind Tunnel (TWT) is a wind tunnel so named because it is capable of testing in three speed regimes – subsonic, transonic, and supersonic. The earliest known trisonic wind tunnel was dated to 1950 and was located in El Segundo, California before it closed in 2007. Other trisonic wind tunnels currently in operation are those located at NASA's Marshall Space Flight Center, National Researach Council Canada's 1.5 m Trisonic Wind Tunnel Research Facility and the French-German Research Institute of Saint-Louis, ISRO's Vikram Sarabhai Space Centre(VSSC) in Thiruvananthapuram, India.
In aeronautics, expansion and shock tunnels are aerodynamic testing facilities with a specific interest in high speeds and high temperature testing. Shock tunnels use steady flow nozzle expansion whereas expansion tunnels use unsteady expansion with higher enthalpy, or thermal energy. In both cases the gases are compressed and heated until the gases are released, expanding rapidly down the expansion chamber. The tunnels reach speeds from Mach 3 to Mach 30 to create testing conditions that simulate hypersonic to re-entry flight. These tunnels are used by military and government agencies to test hypersonic vehicles that undergo a variety of natural phenomenon that occur during hypersonic flight.
Reusable Launch Vehicle–Technology Demonstration Programme is a series of technology demonstration missions that has been conceived by the Indian Space Research Organisation (ISRO) as a first step towards realising a Two Stage To Orbit (TSTO) reusable launch vehicle, in which the second stage is a spaceplane.
The Aeronautical/Astronautical Research Laboratory (AARL) is an aerospace engineering research facility operated by Ohio State University. It is the principal research facility of the College of Engineering's Department of Aerospace and Astronautical Engineering. It is located on the grounds of Ohio State University Airport, in Columbus, Ohio.
General Applied Science Laboratory (GASL) is an American aerospace company, known as a pioneer of hypersonic propulsion.
AEDC Hypervelocity Wind Tunnel 9 is a hypersonic wind tunnel owned by the United States Air Force and operated by National Aerospace Solutions The facility can generate high Mach numbers and high Reynolds for hypersonic ground testing and the validation of computational simulations for the Air Force and Department of Defense.
The High-Enthalpy Arc-Heated Facilities at Arnold Engineering Development Complex provide aerothermal ground test simulations of hypersonic flight over a wide range of velocities and pressure altitudes in support of materials and structures development. The facility is composed of three Arc Heaters: HEAT-H1, HEAT-H2, and Heat-H3 which can heat air up to 13,000 degrees Rankine through a controlled high voltage direct current electric arc discharge. The test unit is owned by the United States Air Force and operated by National Aerospace Solutions.
The von Karman Gas Dynamics Facility at Arnold Engineering Development Complex, Arnold Air Force Base, Tennessee, provide aerothermal ground test simulations of hypersonic flight over a wide range of velocities and pressure altitudes. The facility consists of three Hypersonic wind tunnels: Tunnel A, B, and C. The wind tunnels can be run for several hours at a time thanks to a 92,500 horsepower air compressor plant system. The test unit is owned by the United States Air Force and operated by National Aerospace Solutions.
The MARHy Hypersonic low density Wind Tunnel, located at the ICARE Laboratory in Orléans, France, is a research facility used extensively for fundamental and applied research of fluid dynamic phenomena in rarefied compressible flows. Its name is an acronym for Mach Adaptable Rarefied Hypersonic, and the wind tunnel is recorded under this name in the European portal MERIL.
The PHEDRA High Enthalpy low density Wind Tunnel, located at the ICARE Laboratory in Orléans, France, is a research facility used extensively for fundamental and applied research on non equilibrium plasma flows and planetary atmospheric entries. Its name is an acronym for soufflerie à Plasma Hors Equilibre de Rentreés Atmosphériques. Phedra wind tunnel takes part of the European Landscape Network portal MERIL.