Sieve (category theory)

Last updated

In category theory, a branch of mathematics, a sieve is a way of choosing arrows with a common codomain. It is a categorical analogue of a collection of open subsets of a fixed open set in topology. In a Grothendieck topology, certain sieves become categorical analogues of open covers in topology. Sieves were introduced by Giraud (1964) in order to reformulate the notion of a Grothendieck topology.

Contents

Definition

Let C be a category, and let c be an object of C. A sieve on c is a subfunctor of Hom(, c), i.e., for all objects c of C, S(c) ⊆ Hom(c, c), and for all arrows f:cc, S(f) is the restriction of Hom(f, c), the pullback by f (in the sense of precomposition, not of fiber products), to S(c); see the next section, below.

Put another way, a sieve is a collection S of arrows with a common codomain that satisfies the condition, "If g:cc is an arrow in S, and if f:cc is any other arrow in C, then gf is in S." Consequently, sieves are similar to right ideals in ring theory or filters in order theory.

Pullback of sieves

The most common operation on a sieve is pullback. Pulling back a sieve S on c by an arrow f:cc gives a new sieve f*S on c. This new sieve consists of all the arrows in S that factor through c.

There are several equivalent ways of defining f*S. The simplest is:

For any object d of C, f*S(d) = { g:dc | fg S(d)}

A more abstract formulation is:

f*S is the image of the fibered product S×Hom(, c)Hom(, c) under the natural projection S×Hom(, c)Hom(, c)Hom(, c).

Here the map Hom(, c)→Hom(, c) is Hom(f, c), the pullback by f.

The latter formulation suggests that we can also take the image of S×Hom(, c)Hom(, c) under the natural map to Hom(, c). This will be the image of f*S under composition with f. For each object d of C, this sieve will consist of all arrows fg, where g:dc is an arrow of f*S(d). In other words, it consists of all arrows in S that can be factored through f.

If we denote by c the empty sieve on c, that is, the sieve for which (d) is always the empty set, then for any f:cc, f*c is c. Furthermore, f*Hom(, c) = Hom(, c).

Properties of sieves

Let S and S be two sieves on c. We say that SS if for all objects c of C, S(c) ⊆ S(c). For all objects d of C, we define (SS)(d) to be S(d) ∪ S(d) and (SS)(d) to be S(d) ∩ S(d). We can clearly extend this definition to infinite unions and intersections as well.

If we define SieveC(c) (or Sieve(c) for short) to be the set of all sieves on c, then Sieve(c) becomes partially ordered under ⊆. It is easy to see from the definition that the union or intersection of any family of sieves on c is a sieve on c, so Sieve(c) is a complete lattice.

A Grothendieck topology is a collection of sieves subject to certain properties. These sieves are called covering sieves. The set of all covering sieves on an object c is a subset J(c) of Sieve(c). J(c) satisfies several properties in addition to those required by the definition:

Consequently, J(c) is also a distributive lattice, and it is cofinal in Sieve(c).

Related Research Articles

<span class="mw-page-title-main">Category theory</span> General theory of mathematical structures

Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

<span class="mw-page-title-main">Category (mathematics)</span> Mathematical object that generalizes the standard notions of sets and functions

In mathematics, a category is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.

In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object X in the category correspond to the morphisms from X to Ω. In typical examples, that morphism assigns "true" to the elements of the subobject and "false" to the other elements of X. Therefore, a subobject classifier is also known as a "truth value object" and the concept is widely used in the categorical description of logic. Note however that subobject classifiers are often much more complicated than the simple binary logic truth values {true, false}.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories. The dual notion is that of a projective object.

In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory, and subspaces from topology. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a morphism that describes how one object sits inside another, rather than relying on the use of elements.

In mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the homotopy category Hotc of pointed connected CW complexes, to the category of sets Set, to be a representable functor.

Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

In category theory, a branch of mathematics, a subfunctor is a special type of functor that is an analogue of a subset.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In algebra, Schlessinger's theorem is a theorem in deformation theory introduced by Schlessinger (1968) that gives conditions for a functor of artinian local rings to be pro-representable, refining an earlier theorem of Grothendieck.

In mathematics, the ind-completion or ind-construction is the process of freely adding filtered colimits to a given category C. The objects in this ind-completed category, denoted Ind(C), are known as direct systems, they are functors from a small filtered category I to C.

References