Signal-to-crosstalk ratio

Last updated

The signal-to-crosstalk ratio at a specified point in a circuit is the ratio of the power of the wanted signal to the power of the unwanted signal from another channel.

Electrical network interconnection of electrical components or a model of such an interconnection, consisting of electrical elements

An electrical network is an interconnection of electrical components or a model of such an interconnection, consisting of electrical elements. An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Linear electrical networks, a special type consisting only of sources, linear lumped elements, and linear distributed elements, have the property that signals are linearly superimposable. They are thus more easily analyzed, using powerful frequency domain methods such as Laplace transforms, to determine DC response, AC response, and transient response.

Ratio relationship between two numbers of the same kind

In mathematics, a ratio is a relationship between two numbers indicating how many times the first number contains the second. For example, if a bowl of fruit contains eight oranges and six lemons, then the ratio of oranges to lemons is eight to six. Similarly, the ratio of lemons to oranges is 6:8 and the ratio of oranges to the total amount of fruit is 8:14.

In physics, power is the rate of doing work or transferring heat, the amount of energy transferred or converted per unit time. Having no direction, it is a scalar quantity. In the International System of Units, the unit of power is the joule per second (J/s), known as the watt in honour of James Watt, the eighteenth-century developer of the condenser steam engine. Another common and traditional measure is horsepower. Being the rate of work, the equation for power can be written:

The signals are adjusted in each channel so that they are of equal power at the zero transmission level point in their respective channels.

The signal-to-crosstalk ratio is usually expressed in dB.

The decibel is a unit of measurement used to express the ratio of one value of a power or field quantity to another on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively. It can be used to express a change in value or an absolute value. In the latter case, it expresses the ratio of a value to a fixed reference value; when used in this way, a suffix that indicates the reference value is often appended to the decibel symbol. For example, if the reference value is 1 volt, then the suffix is "V", and if the reference value is one milliwatt, then the suffix is "m".

Related Research Articles

Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves of the same frequency are out of phase with each other by 90°, a condition known as orthogonality and as quadrature. Being the same frequency, the modulated carriers add together, but can be coherently separated (demodulated) because of their orthogonality property. Another key property is that the modulations are low-frequency/low-bandwidth waveforms compared to the carrier frequency, which is known as the narrowband assumption.

Adjacent-channel interference (ACI) is interference caused by extraneous power from a signal in an adjacent channel. ACI may be caused by inadequate filtering, improper tuning or poor frequency control.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

Signal reflection

Signal reflection occurs when a signal is transmitted along a transmission medium, such as a copper cable or an optical fiber. Some of the signal power may be reflected back to its origin rather than being carried all the way along the cable to the far end. This happens because imperfections in the cable cause impedance mismatches and non-linear changes in the cable characteristics. These abrupt changes in characteristics cause some of the transmitted signal to be reflected. In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient.

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.

Communication channel refers either to a physical transmission medium such as a wire, or to a logical connection

A communication channel or simply channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Co-channel interference or CCI is crosstalk from two different radio transmitters using the same channel. Co-channel interference can be caused by many factors from weather conditions to administrative and design issues. Co-channel interference may be controlled by various radio resource management schemes.

Audio system measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Some aspects of measurement and specification relate only to intended usage. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.

VGA connector

A Video Graphics Array (VGA) connector is a three-row 15-pin DE-15 connector. The 15-pin VGA connector was provided on many video cards, computer monitors, laptop computers, projectors, and high definition television sets. On laptop computers or other small devices, a mini-VGA port was sometimes used in place of the full-sized VGA connector.

Attenuation-to-crosstalk ratio

Attenuation-to-crosstalk ratio (ACR) is a parameter that is measured when testing a communication link, which represents the overall performance of the cable. ACR is a mathematical formula that calculates the ratio of attenuation to near-end crosstalk for each combination of cable pairs. ACR is expressed as a figure in decibels (dB), between the signal attenuation produced by a wire or cable transmission medium and the near-end crosstalk (NEXT). In order for a signal to be received with an acceptable bit error rate, the attenuation and the crosstalk must both be minimized. Crosstalk can be reduced by ensuring that twisted-pair wiring is tightly twisted and is not crushed, and by ensuring that connectors between wire and cable media are properly rated and installed.

In electronic communications, especially in telecommunications, an interference is that which modifies a signal in a disruptive manner, as it travels along a channel between its source and receiver. The term is often used to refer to the addition of unwanted signals to a useful signal. Common examples are:

In electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, inductive, or conductive coupling from one circuit or channel to another.

Signal integrity

Signal integrity or SI is a set of measures of the quality of an electrical signal. In digital electronics, a stream of binary values is represented by a voltage waveform. However, digital signals are fundamentally analog in nature, and all signals are subject to effects such as noise, distortion, and loss. Over short distances and at low bit rates, a simple conductor can transmit this with sufficient fidelity. At high bit rates and over longer distances or through various mediums, various effects can degrade the electrical signal to the point where errors occur and the system or device fails. Signal integrity engineering is the task of analyzing and mitigating these effects. It is an important activity at all levels of electronics packaging and assembly, from internal connections of an integrated circuit (IC), through the package, the printed circuit board (PCB), the backplane, and inter-system connections. While there are some common themes at these various levels, there are also practical considerations, in particular the interconnect flight time versus the bit period, that cause substantial differences in the approach to signal integrity for on-chip connections versus chip-to-chip connections.

Noise (electronics) random fluctuation in an electrical signal

In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects.

Copper cable certification

In copper twisted pair wire networks, copper cable certification is achieved through a thorough series of tests in accordance with Telecommunications Industry Association (TIA) or International Organization for Standardization (ISO) standards. These tests are done using a certification-testing tool, which provide pass or fail information. While certification can be performed by the owner of the network, certification is primarily done by datacom contractors. It is this certification that allows the contractors to warranty their work.

The signal-to-interference ratio, also known as the carrier-to-interference ratio, is the quotient between the average received modulated carrier power S or C and the average received co-channel interference power I, i.e. cross-talk, from other transmitters than the useful signal.

Asymmetric digital subscriber line DSL where downstream bandwidth exceeds upstream bandwidth

Asymmetric digital subscriber line (ADSL) is a type of digital subscriber line (DSL) technology, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can provide. ADSL differs from the less common symmetric digital subscriber line (SDSL). In ADSL, bandwidth and bit rate are said to be asymmetric, meaning greater toward the customer premises (downstream) than the reverse (upstream). Providers usually market ADSL as a service for consumers for Internet access for primarily downloading content from the Internet, but not serving content accessed by others.

Audio analyzer

An Audio Analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.

Water filling algorithm is a general name given to the ideas in communication systems design and practice for equalization strategies on communications channels. As the name suggests, just as water finds its level even when filled in one part of a vessel with multiple openings, as a consequence of Pascal's law, the amplifier systems in communications network repeaters, or receivers amplify each channel up to the required power level compensating for the channel impairments. See, for example, channel power allocation in MIMO systems.

In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR) is a quantity used to give theoretical upper bounds on channel capacity in wireless communication systems such as networks. Analogous to the SNR used often in wired communications systems, the SINR is defined as the power of a certain signal of interest divided by the sum of the interference power and the power of some background noise. If the power of noise term is zero, then the SINR reduces to the signal-to-interference ratio (SIR). Conversely, zero interference reduces the SINR to the signal-to-noise ratio (SNR), which is used less often when developing mathematical models of wireless networks such as cellular networks.

References

General Services Administration United States government agency

The General Services Administration (GSA), an independent agency of the United States government, was established in 1949 to help manage and support the basic functioning of federal agencies. GSA supplies products and communications for U.S. government offices, provides transportation and office space to federal employees, and develops government-wide cost-minimizing policies and other management tasks.

MIL-STD-188 series of U.S. military standards relating to telecommunications

MIL-STD-188 is a series of U.S. military standards relating to telecommunications.