Spar (mineralogy)

Last updated
Dogtooth spar with fluorite from the Elmwood Mine in Tennessee Calcite, fluorine.jpg
Dogtooth spar with fluorite from the Elmwood Mine in Tennessee

Spar is an old mining or mineralogy term used to refer to crystals that have readily discernible faces. A spar will easily break or cleave into rhomboidal, cubical, or laminated fragments with smooth shiny surfaces.

Contents

The various spar minerals were a historical term among miners and alchemists for any nonmetallic mineral akin to gypsum, known in Old English as spærstān, spear stone, referring to its crystalline projections. Thus, the word spar in mineralogy has the same root as "spear,".

Amongst miners the term "spar" today is frequently used alone to express any bright crystalline substance. Most frequently, spar describes easily cleaved, lightly colored nonmetallic minerals such as feldspar, calcite or baryte. Baryte (Ba S O 4), the main source of barium, is also called "heavy spar" (Greek "barys" means "heavy"). Calcite often forms the dogtooth spar crystals found in vugs and caves.

Formation underwater

Generally, a spar will form underwater, either in a phreatic zone, or below the water table, the essential place where most caves form, or in standing pools, as pool spar. [1] If a cave floods and a pool forms, that submerges stalactites, a formation known as bottlebrushes may form. [2] Mineral component ions dissolved in water are mostly deposited as minerals such as calcite and gypsum, and sometimes even halite, quartz, and fluorite, through the course of thousands of years, building up on each other.

Formation in the air

Sometimes, spar will form in the air due to solutions seeping out of the cave's walls or through porous sediments. When grown in the air, it is often made of gypsum or selenite. Sometimes it will form as small needles found in sediments. Other spars can be found on the tips of gypsum chandeliers.

See also

Related Research Articles

<span class="mw-page-title-main">Gypsum</span> Soft calcium sulfate mineral

Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula CaSO4·2H2O. It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, drywall and blackboard or sidewalk chalk. Gypsum also crystallizes as translucent crystals of selenite. It forms as an evaporite mineral and as a hydration product of anhydrite. The Mohs scale of mineral hardness defines gypsum as hardness value 2 based on scratch hardness comparison.

<span class="mw-page-title-main">Fluorite</span> Mineral form of calcium fluoride

Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon.

<span class="mw-page-title-main">Calcite</span> Calcium carbonate mineral

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

<span class="mw-page-title-main">Celestine (mineral)</span> Sulfate mineral

Celestine (the IMA-accepted name) or celestite is a mineral consisting of strontium sulfate (SrSO4). The mineral is named for its occasional delicate blue color. Celestine and the carbonate mineral strontianite are the principal sources of the element strontium, commonly used in fireworks and in various metal alloys.

<span class="mw-page-title-main">Speleothem</span> Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

<span class="mw-page-title-main">Selenite (mineral)</span> Mineral variety of gypsum

Selenite, satin spar, desert rose, gypsum flower are crystal habit varieties of the mineral gypsum.

<span class="mw-page-title-main">Anhydrite</span> Mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

<span class="mw-page-title-main">Witherite</span> Barium carbonate mineral

Witherite is a barium carbonate mineral, BaCO3, in the aragonite group. Witherite crystallizes in the orthorhombic system and virtually always is twinned. The mineral is colorless, milky-white, grey, pale-yellow, green, to pale-brown. The specific gravity is 4.3, which is high for a translucent mineral. It fluoresces light blue under both long- and short-wave UV light, and is phosphorescent under short-wave UV light.

<span class="mw-page-title-main">Alstonite</span>

Alstonite, also known as bromlite, is a low temperature hydrothermal mineral that is a rare double carbonate of calcium and barium with the formula BaCa(CO
3
)
2
, sometimes with some strontium. Barytocalcite and paralstonite have the same formula but different structures, so these three minerals are said to be trimorphous. Alstonite is triclinic but barytocalcite is monoclinic and paralstonite is trigonal. The species was named Bromlite by Thomas Thomson in 1837 after the Bromley-Hill mine, and alstonite by August Breithaupt of the Freiberg Mining Academy in 1841, after Alston, Cumbria, the base of operations of the mineral dealer from whom the first samples were obtained by Thomson in 1834. Both of these names have been in common use.

<span class="mw-page-title-main">Hornfels</span>

Hornfels is the group name for a set of contact metamorphic rocks that have been baked and hardened by the heat of intrusive igneous masses and have been rendered massive, hard, splintery, and in some cases exceedingly tough and durable. These properties are caused by fine grained non-aligned crystals with platy or prismatic habits, characteristic of metamorphism at high temperature but without accompanying deformation. The term is derived from the German word Hornfels, meaning "hornstone", because of its exceptional toughness and texture both reminiscent of animal horns. These rocks were referred to by miners in northern England as whetstones.

<span class="mw-page-title-main">Barytocalcite</span>

Barytocalcite is an anhydrous barium calcium carbonate mineral with the chemical formula BaCa(CO3)2. It is trimorphous with alstonite and paralstonite, that is to say the three minerals have the same formula but different structures. Baryte and quartz pseudomorphs after barytocalcite have been observed.

<span class="mw-page-title-main">Dogtooth spar</span> Large clusters of precripitated cave crystals

Dogtooth spar is a speleothem that consists of large calcite crystals that form through mineral precipitation of water-borne calcite. Dogtooth spar crystals are found in caves, open spaces including veins and fractures, and geodes. They are so named for their resemblance to dog's teeth.

<span class="mw-page-title-main">Anthodite</span> Speleothems composed of long needle-like crystals situated in clusters

Anthodites (Greek ἄνθος ánthos, "flower", -ode, adjectival combining form, -ite adjectival suffix) are speleothems (cave formations) composed of long needle-like crystals situated in clusters which radiate outward from a common base. The "needles" may be quill-like or feathery. Most anthodites are made of the mineral aragonite (a variety of calcium carbonate, CaCO3), although some are composed of gypsum (CaSO4·2H2O).

<span class="mw-page-title-main">Brushite</span> Calcium phosphate mineral

Brushite is a phosphate mineral with the chemical formula CaHPO4·2H2O. Crystals of the pure compound belong to the monoclinic space group C2/c and are colorless. It is the phosphate analogue of the arsenate pharmacolite.

<span class="mw-page-title-main">Rimstone</span> Cave formation

Rimstone, also called gours, is a type of speleothem in the form of a stone dam. Rimstone is made up of calcite and other minerals that build up in cave pools. The formation created, which looks like stairs, often extends into flowstone above or below the original rimstone. Often, rimstone is covered with small, micro-gours on horizontal surfaces. Rimstone basins may form terraces that extend over hundreds of feet, with single basins known up to 200 feet long from Tham Xe Biang Fai in Laos.

<span class="mw-page-title-main">Howlite</span>

Howlite, a calcium borosilicate hydroxide (Ca2B5SiO9(OH)5), is a borate mineral found in evaporite deposits.

<span class="mw-page-title-main">Plattnerite</span>

Plattnerite is an oxide mineral and is the beta crystalline form of lead dioxide (β-PbO2), scrutinyite being the other, alpha form. It was first reported in 1845 and named after German mineralogist Karl Friedrich Plattner. Plattnerite forms bundles of dark needle-like crystals on various minerals; the crystals are hard and brittle and have tetragonal symmetry.

<span class="mw-page-title-main">Mendipite</span> Oxyhalide of lead. Rare mineral found in the Mendip Hills

Mendipite is a rare mineral that was named in 1939 for the locality where it is found, the Mendip Hills in Somerset, England. It is an oxyhalide of lead with formula Pb3Cl2O2.

A bottlebrush is a cave formation which results when a stalactite is immersed in rising water which is supersaturated with calcium carbonate. The stalactite becomes coated with pool spar.

<span class="mw-page-title-main">Rampghill mine</span>

Rampgill mine is a disused lead mine at Nenthead, Alston Moor, Cumbria, England UK Grid Reference: NY78184351

References

  1. Bunnell, Dave. "Pool spar". The virtual cave. Retrieved 8 December 2013.
  2. Bunnell, Dave. "Bottlebrushes". The virtual cave. Retrieved 8 December 2013.