Spherical nucleic acid

Last updated

Figure 1. Three important classes of nucleic acids: one-dimensional linear, two-dimensional circular, and three-dimensional spherical. Classes of Nucleic Acids.jpg
Figure 1. Three important classes of nucleic acids: one-dimensional linear, two-dimensional circular, and three-dimensional spherical.

Spherical nucleic acids (SNAs) [1] are nanostructures that consist of a densely packed, highly oriented arrangement of linear nucleic acids in a three-dimensional, spherical geometry. This novel three-dimensional architecture is responsible for many of the SNA's novel chemical, biological, and physical properties that make it useful in biomedicine and materials synthesis. SNAs were first introduced in 1996 [2] by Chad Mirkin’s group at Northwestern University.

Contents

Structure and function

The SNA structure typically consists of two components: a nanoparticle core and a nucleic acid shell. The nucleic acid shell is made up of short, synthetic oligonucleotides terminated with a functional group that can be utilized to attach them to the nanoparticle core. The dense loading of nucleic acids on the particle surface results in a characteristic radial orientation around the nanoparticle core, which minimizes repulsion between the negatively charged oligonucleotides. [3]

The first SNA consisted of a gold nanoparticle core with a dense shell of 3’ alkanethiol-terminated DNA strands. [2] Repeated additions of salt counterions were used to reduce the electrostatic repulsion between DNA strands and enable more efficient DNA packing on the nanoparticle surface. Since then, silver, [4] iron oxide, [5] silica, [6] and semiconductor [7] materials have also been used as inorganic cores for SNAs. Other core materials with increased biocompatibility, such FDA-approved PLGA polymer nanoparticles, [8] micelles, [9] liposomes, [10] and proteins [11] have also been used to prepare SNAs. Single-stranded and double-stranded versions of these materials have been created using, for example, DNA, LNA, and RNA.

One- and two-dimensional forms of nucleic acids (e.g., single strands, linear duplexes, and plasmids) (Fig. 1) are important biological machinery for the storage and transmission of genetic information. The specificity of DNA interactions through Watson–Crick base pairing provides the foundation for these functions. Scientists and engineers have been synthesizing and, in certain cases, mass-producing nucleic acids for decades to understand and exploit this elegant chemical recognition motif. The recognition abilities of nucleic acids can be enhanced when arranged in a spherical geometry, which allows for polyvalent interactions to occur. This polyvalency [ further explanation needed ], along with the high density and degree of orientation described above, helps explain why SNAs exhibit different properties than their lower-dimensional constituents (Fig. 2).

Figure 2. Properties of spherical nucleic acids (SNAs) versus linear nucleic acids. Core-filled and Core-less Spherical Nucleic Acids 03.jpg
Figure 2. Properties of spherical nucleic acids (SNAs) versus linear nucleic acids.

Over two decades of research has revealed that the properties of a SNA conjugate are a synergistic combination of those of the core and the shell. The core serves two purposes: 1) it imparts upon the conjugate novel physical and chemical properties (e.g., plasmonic, [2] catalytic, [12] [13] magnetic, [14] luminescent [15] ), and 2) it acts as a scaffold for the assembly and orientation of the nucleic acids. The nucleic acid shell imparts chemical and biological recognition abilities that include a greater binding strength, [16] cooperative melting behavior, [17] higher stability, [18] and enhanced cellular uptake without the use of transfection agents [19] (compared to the same sequence of linear DNA). It has been shown that one can crosslink the DNA strands at their base, and subsequently dissolve the inorganic core with KCN or I2 to create a core-less (hollow) form of SNA (Fig. 3, right), [12] which exhibits many of the same properties as the original polyvalent DNA gold nanoparticle conjugate (Fig. 3, left).

Figure 3. Gold nanoparticle filled and core-less spherical nucleic acid structures (SNAs). Core-filled and Core-less Spherical Nucleic Acids 01.jpg
Figure 3. Gold nanoparticle filled and core-less spherical nucleic acid structures (SNAs).

Due to their structure and function, SNAs occupy a materials space distinct from DNA nanotechnology and DNA origami, [20] [21] (although both are important to the field of nucleic acid–guided programmable materials. [22] With DNA origami, such structures are synthesized via DNA hybridization events. In contrast, the SNA structure can be synthesized independent of nucleic acid sequence and hybridization, instead their synthesis relies upon chemical bond formation between nanoparticles and DNA ligands. Furthermore, DNA origami uses DNA hybridization interactions to realize a final structure, whereas SNAs and other forms of three-dimensional nucleic acids (anisotropic structures templated with triangular prism, rod, octahedra, or rhombic dodecadhedra-shaped nanoparticles) [23] utilize the nanoparticle core to arrange the linear nucleic acid components into functional forms. It is the particle core that dictates the shape of the SNA. SNAs should also not be confused with their monovalent analogues – individual particles coupled to a single DNA strand. [24] Such single strand-nanoparticle conjugate structures have led to interesting advances in their own right, but do not exhibit the unique properties of SNAs.

Proposed applications

Intracellular gene regulation

Figure 4. Nucleic acids arranged in a spherical geometry offer a fundamentally new path toward gene regulation. Benefits to this approach include the ability to enter cells without precomplexation with transfection agents, nuclease resistance, and minimal immune response. Core-filled and Core-less Spherical Nucleic Acids 02.jpg
Figure 4. Nucleic acids arranged in a spherical geometry offer a fundamentally new path toward gene regulation. Benefits to this approach include the ability to enter cells without precomplexation with transfection agents, nuclease resistance, and minimal immune response.

SNAs are being proposed as therapeutic materials. Despite their high negative charge, they are taken up by cells (also negatively charged) in high quantities without the need for positively charged co-carriers, and they are effective as gene regulation agents in both antisense and RNAi pathways (Fig. 4). [19] [25] The proposed mechanism is that, unlike their linear counterparts, SNAs have the ability to complex scavenger receptor proteins to facilitate endocytosis. [26]

SNAs were shown to deliver small interfering RNA (siRNA) to treat glioblastoma multiforme in a proof-of-concept study using a mouse model. [27] The SNAs target Bcl2Like12, a gene overexpressed in glioblastoma tumors, and silences the oncogene. The SNAs injected intravenously cross the blood–brain barrier and find their target in the brain. In the animal model, the treatment resulted in a 20% increase in survival rate and 3 to 4-fold reduction in tumor size. This SNA-based therapeutic approach establishes a platform for treating a wide range of diseases with a genetic basis via digital drug design (where a new drug is made by changing the sequence of nucleic acid on a SNA).

Immunotherapy agents

SNA properties, such as enhanced cellular uptake, multivalent binding, and endosomal delivery, are desirable for the delivery of immunomodulatory nucleic acids. In particular, SNAs have been used deliver nucleic acids that agonize or antagonize toll-like receptors (proteins involved in innate immune signaling). The use of immunostimulatory SNAs has been shown to result in an 80-fold increase in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas compared to free oligonucleotides (not in SNA form). [28] SNAs have also been used by Mirkin to introduce the concept of “rational vaccinology,” that the chemical structure of an immunotherapy, as opposed to just the components alone, dictates its efficacy. [29] This concept has put a new structural focus on engineering vaccines for a wide range of diseases. This finding opens the possibility that, with previous treatments, researchers had the right components in the wrong structural arrangement – a particularly important lesson, especially in the context of COVID-19.

Figure 5. The FDA-cleared Verigene system, originally developed and commercialized by Nanosphere, Inc., a company spun-out of research projects initiated in Mirkin's laboratory at Northwestern University. This system is now sold by Luminex, which acquired Nanosphere in 2016. Verigene System from Nanosphere, Inc..jpg
Figure 5. The FDA-cleared Verigene system, originally developed and commercialized by Nanosphere, Inc., a company spun-out of research projects initiated in Mirkin's laboratory at Northwestern University. This system is now sold by Luminex, which acquired Nanosphere in 2016.

Intracellular probes

NanoFlares utilize the SNA architecture for intracellular mRNA detection. [30] In this design, alkanethiol-terminated antisense DNA strands (complementary to a target mRNA strand within cells) are attached to the surface of a gold nanoparticle. Fluorophore-labeled “reporter strands” are then hybridized to the SNA construct to form the NanoFlare. When the fluorophore labels are brought in close proximity of the gold surface, as controlled by programmable nucleic acid hybridization, their fluorescence is quenched (Fig. 6). After the cellular uptake of NanoFlares, the reporter strands can dehybridize from the NanoFlare when they are replaced by a longer, target mRNA sequence. Note that mRNA binding is thermodynamically favored since the strands holding the reporter sequence have greater overlap of their nucleotide sequence with the target mRNA. Upon reporter strand release, the dye fluorescence is no longer quenched by the gold nanoparticle core and increased fluorescence is observed. This method for RNA detection provides the only way to sort live cells based upon genetic content.

One publication questions the correlation between fluorescence intensities of SmartFlare probes and the levels of corresponding RNAs assessed by RT-qPCR. [31] Another paper has discussed SmartFlare applicability in early equine conceptuses, equine dermal fibroblast cells, and trophoblastic vesicles, finding that SmartFlares may only be applicable for certain uses. [32] Aptamer nanoflares have also been developed to bind to molecular targets other than intracellular mRNA. Aptamers, or oligonucleotide sequences that bind targets with high specificity and sensitivity, were first combined with the NanoFlare architecture in 2009. The arrangement of aptamers in an SNA geometry resulted in increased cellular uptake and detection of physiologically relevant changes in adenosine triphosphate (ATP) levels. [33]

Materials synthesis

SNAs have been utilized to develop an entire new field of materials science – one that focuses on using SNAs as synthetically programmable building blocks for the construction of colloidal crystals (Fig. 7). In 2011, a landmark paper was published in Science that defines a set of design rules for making superlattice structures of tailorable crystallographic symmetry and lattice parameters with sub-nm precision. [34] The complementary contact model (CCM) proposed in this work can be used to predict the thermodynamically favorable structure, which will maximize the number of hybridized DNA strands (contacts) between nanoparticles.

Figure 7. Examples of the types of crystal structures that can be formed using design rules for preparing colloidal crystals. Note that the unit cell schematic, small angle x-ray scattering (SAXS) and electron microscopy data are shown for each example. DNA-Gold Nanoparticle Superlattices.jpg
Figure 7. Examples of the types of crystal structures that can be formed using design rules for preparing colloidal crystals. Note that the unit cell schematic, small angle x-ray scattering (SAXS) and electron microscopy data are shown for each example.

Design rules for colloidal crystals engineered with DNA are analogous to Pauling's Rules for ionic crystals, but ultimately more powerful. For example, when using atomic or ionic building blocks in the construction of materials, the crystal structure, symmetry, and spacing are fixed by atomic radii and electronegativity. However, in the nanoparticle-based system, crystal structure can be tuned independent of the nanoparticle size and composition by simply adjusting the length and sequence of the attached DNA. As a result, nanoparticle building blocks with the SNA geometry are often referred to as “programmable atom equivalents” (PAEs). [35] This strategy has enabled the construction of novel crystal structures for several materials systems and even crystal structures with no mineral equivalents. [36] To date, over 50 different crystal symmetries have been achieved using colloidal crystal engineering with DNA. [37]

Lessons from atomic crystallization on macroscale structural features like crystal habit also translate to colloidal crystal engineering with DNA. The Wulff construction bound by the lowest surface energy facets can be achieved for certain nanoparticle symmetries by using a slow cooling crystallization method. This concept was first demonstrated with a body-centered cubic symmetry, where the densest-packed planes were exposed on the surface resulting in a rhombic dodecahedron crystal habit. [38] Other habits such as octrahedra, cubes, or hexagonal prisms have been realized using anisotropic nanoparticles or non-cubic unit cells. [39] Colloidal crystals have also been grown through heterogeneous growth on DNA-functionalized substrates, where lithography can be used to define templates or specific crystal orientations. [40]

Introducing anisotropy to the underlying nanoparticle core has also expanded the scope of structures that can be programmed using DNA. When shorter DNA designs are used with anisotropic nanoparticle cores, directional bonding interactions between DNA on particle facets can drive the formation of specific lattice symmetries and crystal habits. [23] Localizing DNA to specific parts of a particle building block can also be achieved using biological cores, such as proteins with chemically anisotropic surfaces. [41] Directional interactions and valency have been used to direct the formation of new lattice symmetries with protein cores that are difficult to access with inorganic particles. [42] DNA origami frameworks borrowed from the structural DNA nanotechnology community have also been applied as cages for inorganic nanoparticle cores to impart valency and direct the formation of new lattice symmetries. [43]

Colloidal crystals engineered using DNA often form crystal structures similar to ionic compounds, but a new method to access colloidal crystals with metallic-like bonding was recently reported in Science. [44] Particle analogs of electrons in colloidal crystals can be made using gold nanoparticles with greatly reduced size and numbers of attached DNA strands. When combined with typical PAEs, these “electron equivalents” (EEs) roam through the lattice like electrons do in metals. This discovery can be used to access new alloy or intermetallic structures in colloidal crystals.

The ability to place nanoparticles of any composition and shape at any location in a well-defined crystalline lattice with nm-scale precision should have far-reaching implications in areas ranging from catalysis to photonics to energy. Catalytically active and porous materials have been assembled using DNA, [45] and colloidal crystals engineered with DNA can also function as plasmonic photonic crystals with applications in nanoscale optical devices. [46] Chemical stimuli, such as salt concentration, [47] pH, [48] or solvent, [49] and physical stimuli like light [50] have been harnessed to design stimuli-responsive colloidal crystals using DNA-mediated assembly.

Economic impact

The economic impact of SNA technology is substantial. Three companies have been founded that are based on SNA technology – Nanosphere in 2000, AuraSense in 2009, and AuraSense Therapeutics (now Exicure, Inc.) in 2011. Hundreds of millions of dollars have been invested in these companies and they have employed hundreds of people. The SmartFlares were commercialised by Merck Millipore between 2013 and 2018 for the detection of mRNAs in life cells before being withdrawn as they in fact do not detect mRNAs in life cells. [51] Nanosphere was one of the first nanotechnology-based biotechnology firms to go public in late 2007. It burnt through over $412.5 million since inception [52] before being sold for $58M in 2016 to Luminex. [53] The FDA-cleared Verigene system is now sold by Luminex with accompanying FDA-cleared panel assays for bloodstream, respiratory tract, and gastrointestinal tract infections. It is being used for COVID-19 surveillance. Exicure went public in 2018 and is listed on the Nasdaq (XCUR). At the end of 2022, it was on its "death spiral". [54]

Related Research Articles

<span class="mw-page-title-main">Peptide nucleic acid</span> Biological molecule

Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA.

<span class="mw-page-title-main">Self-assembly</span> Process in which disordered components form an organized structure or pattern

Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the constitutive components are molecules, the process is termed molecular self-assembly.

<span class="mw-page-title-main">Colloidal gold</span> Suspension of gold nanoparticles in a liquid

Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red or blue-purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

Deoxyribozymes, also called DNA enzymes, DNAzymes, or catalytic DNA, are DNA oligonucleotides that are capable of performing a specific chemical reaction, often but not always catalytic. This is similar to the action of other biological enzymes, such as proteins or ribozymes . However, in contrast to the abundance of protein enzymes in biological systems and the discovery of biological ribozymes in the 1980s, there is only little evidence for naturally occurring deoxyribozymes. Deoxyribozymes should not be confused with DNA aptamers which are oligonucleotides that selectively bind a target ligand, but do not catalyze a subsequent chemical reaction.

<span class="mw-page-title-main">Triple-stranded DNA</span> DNA structure

Triple-stranded DNA is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.

<span class="mw-page-title-main">Nucleic acid double helix</span> Structure formed by double-stranded molecules

In molecular biology, the term double helix refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure, and is a fundamental component in determining its tertiary structure. The structure was discovered by Rosalind Franklin, her student Raymond Gosling, James Watson, and Francis Crick, while the term "double helix" entered popular culture with the 1968 publication of Watson's The Double Helix: A Personal Account of the Discovery of the Structure of DNA.

Cell-penetrating peptides (CPPs) are short peptides that facilitate cellular intake and uptake of molecules ranging from nanosize particles to small chemical compounds to large fragments of DNA. The "cargo" is associated with the peptides either through chemical linkage via covalent bonds or through non-covalent interactions.

<span class="mw-page-title-main">Chad Mirkin</span> American chemist

Chad Alexander Mirkin is an American chemist. He is the George B. Rathmann professor of chemistry, professor of medicine, professor of materials science and engineering, professor of biomedical engineering, and professor of chemical and biological engineering, and director of the International Institute for Nanotechnology and Center for Nanofabrication and Molecular Self-Assembly at Northwestern University.

Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

<span class="mw-page-title-main">Platinum nanoparticle</span>

Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium.

<span class="mw-page-title-main">Solid lipid nanoparticle</span> Novel drug delivery system

Lipid nanoparticles (LNPs) are nanoparticles composed of lipids. They are a novel pharmaceutical drug delivery system, and a novel pharmaceutical formulation. LNPs as a drug delivery vehicle were first approved in 2018 for the siRNA drug Onpattro. LNPs became more widely known in late 2020, as some COVID-19 vaccines that use RNA vaccine technology coat the fragile mRNA strands with PEGylated lipid nanoparticles as their delivery vehicle.

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

<span class="mw-page-title-main">DNA nanotechnology</span> The design and manufacture of artificial nucleic acid structures for technological uses

DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.

<span class="mw-page-title-main">Nucleic acid secondary structure</span>

Nucleic acid secondary structure is the basepairing interactions within a single nucleic acid polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule. The secondary structures of biological DNAs and RNAs tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar.

<span class="mw-page-title-main">Polyvalent DNA gold nanoparticles</span>

Polyvalent DNA gold nanoparticles, now more commonly referred to as spherical nucleic acids, are colloidal gold particles densely modified with short, highly oriented, synthetic DNA strands. They were invented by Chad Mirkin et al. at Northwestern University in 1996. Paul Alivisatos et al. at the University of California, Berkeley introduced a related monovalent structure the same year. Due to the strong interaction between gold and thiols (-SH), the first polyvalent DNA gold nanoparticles were obtained by capping the gold nanoparticles with a dense monolayer of thiol-modified DNA. The dense packing and negative charge of the phosphate backbones of DNA orients it into solution with a footprint that is dependent on factors including the particle size and radius of curvature.

<span class="mw-page-title-main">Core–shell semiconductor nanocrystal</span>

Core–shell semiconducting nanocrystals (CSSNCs) are a class of materials which have properties intermediate between those of small, individual molecules and those of bulk, crystalline semiconductors. They are unique because of their easily modular properties, which are a result of their size. These nanocrystals are composed of a quantum dot semiconducting core material and a shell of a distinct semiconducting material. The core and the shell are typically composed of type II–VI, IV–VI, and III–V semiconductors, with configurations such as CdS/ZnS, CdSe/ZnS, CdSe/CdS, and InAs/CdSe Organically passivated quantum dots have low fluorescence quantum yield due to surface related trap states. CSSNCs address this problem because the shell increases quantum yield by passivating the surface trap states. In addition, the shell provides protection against environmental changes, photo-oxidative degradation, and provides another route for modularity. Precise control of the size, shape, and composition of both the core and the shell enable the emission wavelength to be tuned over a wider range of wavelengths than with either individual semiconductor. These materials have found applications in biological systems and optics.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span> Physical phenomenon

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

<span class="mw-page-title-main">Polyvalency (chemistry)</span> Property of chemical species that can form multiple bonds

In chemistry, polyvalency is the property of molecules and larger species, such as antibodies, medical drugs, and even nanoparticles surface-functionalized with ligands, like spherical nucleic acids, that exhibit more than one supramolecular interaction. For the number of chemical bonds of atoms, the term "valence" is used. For both atoms and larger species, the number of bonds may be specified: divalent species can form two bonds; a trivalent species can form three bonds; and so on.

<span class="mw-page-title-main">Intracellular delivery</span> Scientific research area

Intracellular delivery is the process of introducing external materials into living cells. Materials that are delivered into cells include nucleic acids, proteins, peptides, impermeable small molecules, synthetic nanomaterials, organelles, and micron-scale tracers, devices and objects. Such molecules and materials can be used to investigate cellular behavior, engineer cell operations or correct a pathological function.

References

  1. 1 2 3 4 5 Cutler JI, Auyeung E, Mirkin CA (January 2012). "Spherical nucleic acids". Journal of the American Chemical Society. 134 (3): 1376–1391. doi:10.1021/ja209351u. PMID   22229439. S2CID   13676422.
  2. 1 2 3 Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (August 1996). "A DNA-based method for rationally assembling nanoparticles into macroscopic materials". Nature. 382 (6592): 607–609. Bibcode:1996Natur.382..607M. doi:10.1038/382607a0. PMID   8757129. S2CID   4284601.
  3. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (February 2009). "The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles". ACS Nano. 3 (2): 418–424. doi:10.1021/nn800726e. PMC   3241534 . PMID   19236080.
  4. Lee JS, Lytton-Jean AK, Hurst SJ, Mirkin CA (July 2007). "Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties". Nano Letters. 7 (7): 2112–2115. Bibcode:2007NanoL...7.2112L. doi:10.1021/nl071108g. PMC   3200546 . PMID   17571909.
  5. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (April 2010). "Polyvalent oligonucleotide iron oxide nanoparticle "click" conjugates". Nano Letters. 10 (4): 1477–1480. Bibcode:2010NanoL..10.1477C. doi:10.1021/nl100477m. PMC   2874426 . PMID   20307079.
  6. Young KL, Scott AW, Hao L, Mirkin SE, Liu G, Mirkin CA (July 2012). "Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells". Nano Letters. 12 (7): 3867–3871. Bibcode:2012NanoL..12.3867Y. doi:10.1021/nl3020846. PMC   3397824 . PMID   22725653.
  7. Zhang C, Macfarlane RJ, Young KL, Choi CH, Hao L, Auyeung E, et al. (August 2013). "A general approach to DNA-programmable atom equivalents". Nature Materials. 12 (8): 741–746. Bibcode:2013NatMa..12..741Z. doi:10.1038/nmat3647. PMID   23685863. S2CID   6028400.
  8. Zhu S, Xing H, Gordiichuk P, Park J, Mirkin CA (May 2018). "PLGA Spherical Nucleic Acids". Advanced Materials. 30 (22): e1707113. Bibcode:2018AdM....3007113Z. doi:10.1002/adma.201707113. PMC   6029717 . PMID   29682820.
  9. Banga RJ, Meckes B, Narayan SP, Sprangers AJ, Nguyen ST, Mirkin CA (March 2017). "Cross-Linked Micellar Spherical Nucleic Acids from Thermoresponsive Templates". Journal of the American Chemical Society. 139 (12): 4278–4281. doi:10.1021/jacs.6b13359. PMC   5493153 . PMID   28207251.
  10. Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin CA (July 2014). "Liposomal spherical nucleic acids". Journal of the American Chemical Society. 136 (28): 9866–9869. doi:10.1021/ja504845f. PMC   4280063 . PMID   24983505.
  11. Brodin JD, Auyeung E, Mirkin CA (April 2015). "DNA-mediated engineering of multicomponent enzyme crystals". Proceedings of the National Academy of Sciences of the United States of America. 112 (15): 4564–4569. doi: 10.1073/pnas.1503533112 . PMC   4403210 . PMID   25831510.
  12. 1 2 Cutler JI, Zhang K, Zheng D, Auyeung E, Prigodich AE, Mirkin CA (June 2011). "Polyvalent nucleic acid nanostructures". Journal of the American Chemical Society. 133 (24): 9254–9257. doi:10.1021/ja203375n. PMC   3154250 . PMID   21630678..
  13. Taton TA, Mirkin CA, Letsinger RL (September 2000). "Scanometric DNA array detection with nanoparticle probes". Science. 289 (5485): 1757–1760. Bibcode:2000Sci...289.1757T. doi:10.1126/science.289.5485.1757. PMID   10976070. S2CID   24119488.
  14. Park SS, Urbach ZJ, Brisbois CA, Parker KA, Partridge BE, Oh T, et al. (January 2020). "DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals". Advanced Materials. 32 (4): e1906626. Bibcode:2020AdM....3206626P. doi: 10.1002/adma.201906626 . PMID   31814172. S2CID   208955629.
  15. Michell GP, Mirkin CA, Letsinger RL (2005). "Programmed Assembly of DNA Functionalized Quantum Dots [J]". Journal of Crystal Growth. 280 (35): 300–304. doi:10.1021/ja991662v.
  16. Lytton-Jean AK, Mirkin CA (September 2005). "A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes". Journal of the American Chemical Society. 127 (37): 12754–12755. doi:10.1021/ja052255o. PMID   16159241. S2CID   44772135.
  17. Hurst SJ, Hill HD, Mirkin CA (September 2008). ""Three-dimensional hybridization" with polyvalent DNA-gold nanoparticle conjugates". Journal of the American Chemical Society. 130 (36): 12192–12200. doi:10.1021/ja804266j. PMC   8191498 . PMID   18710229.
  18. Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (January 2009). "Polyvalent DNA nanoparticle conjugates stabilize nucleic acids". Nano Letters. 9 (1): 308–311. Bibcode:2009NanoL...9..308S. doi:10.1021/nl802958f. PMC   3918421 . PMID   19099465.
  19. 1 2 Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA (May 2006). "Oligonucleotide-modified gold nanoparticles for intracellular gene regulation". Science. 312 (5776): 1027–1030. Bibcode:2006Sci...312.1027R. doi:10.1126/science.1125559. PMID   16709779. S2CID   28476438.
  20. Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H (April 2011). "DNA origami with complex curvatures in three-dimensional space". Science. 332 (6027): 342–346. Bibcode:2011Sci...332..342H. doi:10.1126/science.1202998. PMID   21493857. S2CID   22210988.
  21. Seeman NC (January 2003). "DNA in a material world". Nature. 421 (6921): 427–431. Bibcode:2003Natur.421..427S. doi: 10.1038/nature01406 . PMID   12540916. S2CID   4335806.
  22. Jones MR, Seeman NC, Mirkin CA (February 2015). "Nanomaterials. Programmable materials and the nature of the DNA bond". Science. 347 (6224): 1260901. doi: 10.1126/science.1260901 . PMID   25700524. S2CID   206562591.
  23. 1 2 Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, et al. (November 2010). "DNA-nanoparticle superlattices formed from anisotropic building blocks". Nature Materials. 9 (11): 913–917. Bibcode:2010NatMa...9..913J. doi:10.1038/nmat2870. PMID   20890281. S2CID   6277948.
  24. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, et al. (August 1996). "Organization of 'nanocrystal molecules' using DNA". Nature. 382 (6592): 609–611. Bibcode:1996Natur.382..609A. doi:10.1038/382609a0. PMID   8757130. S2CID   2024148.
  25. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (February 2009). "Gene regulation with polyvalent siRNA-nanoparticle conjugates". Journal of the American Chemical Society. 131 (6): 2072–2073. doi:10.1021/ja808719p. PMC   2843496 . PMID   19170493.
  26. Choi CH, Hao L, Narayan SP, Auyeung E, Mirkin CA (May 2013). "Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates". Proceedings of the National Academy of Sciences of the United States of America. 110 (19): 7625–7630. Bibcode:2013PNAS..110.7625C. doi: 10.1073/pnas.1305804110 . PMC   3651452 . PMID   23613589.
  27. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, et al. (October 2013). "Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma". Science Translational Medicine. 5 (209): 209ra152. doi:10.1126/scitranslmed.3006839. PMC   4017940 . PMID   24174328.
  28. Radovic-Moreno AF, Chernyak N, Mader CC, Nallagatla S, Kang RS, Hao L, et al. (March 2015). "Immunomodulatory spherical nucleic acids". Proceedings of the National Academy of Sciences of the United States of America. 112 (13): 3892–3897. Bibcode:2015PNAS..112.3892R. doi: 10.1073/pnas.1502850112 . PMC   4386353 . PMID   25775582.
  29. Wang S, Qin L, Yamankurt G, Skakuj K, Huang Z, Chen PC, et al. (May 2019). "Rational vaccinology with spherical nucleic acids". Proceedings of the National Academy of Sciences of the United States of America. 116 (21): 10473–10481. Bibcode:2019PNAS..11610473W. doi: 10.1073/pnas.1902805116 . PMC   6535021 . PMID   31068463.
  30. Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (December 2007). "Nano-flares: probes for transfection and mRNA detection in living cells". Journal of the American Chemical Society. 129 (50): 15477–15479. doi:10.1021/ja0776529. PMC   3200543 . PMID   18034495.
  31. Czarnek M, Bereta J (September 2017). "SmartFlares fail to reflect their target transcripts levels". Scientific Reports. 7 (1): 11682. Bibcode:2017NatSR...711682C. doi:10.1038/s41598-017-11067-6. PMC   5600982 . PMID   28916792.
  32. Budik S, Tschulenk W, Kummer S, Walter I, Aurich C (October 2017). "Evaluation of SmartFlare probe applicability for verification of RNAs in early equine conceptuses, equine dermal fibroblast cells and trophoblastic vesicles". Reproduction, Fertility, and Development. 29 (11): 2157–2167. doi:10.1071/RD16362. PMID   28248633.
  33. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (September 2009). "Aptamer nano-flares for molecular detection in living cells". Nano Letters. 9 (9): 3258–3261. Bibcode:2009NanoL...9.3258Z. doi:10.1021/nl901517b. PMC   3200529 . PMID   19645478.
  34. 1 2 Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA (October 2011). "Nanoparticle superlattice engineering with DNA". Science. 334 (6053): 204–208. Bibcode:2011Sci...334..204M. doi:10.1126/science.1210493. PMID   21998382. S2CID   1626420.
  35. Macfarlane RJ, O'Brien MN, Petrosko SH, Mirkin CA (May 2013). "Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new "table of elements"". Angewandte Chemie. 52 (22): 5688–5698. doi:10.1002/anie.201209336. PMID   23640804. S2CID   21929457.
  36. Auyeung E, Cutler JI, Macfarlane RJ, Jones MR, Wu J, Liu G, et al. (December 2011). "Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach". Nature Nanotechnology. 7 (1): 24–28. doi:10.1038/nnano.2011.222. PMID   22157725. S2CID   32732649.
  37. Laramy CR, O'Brien MN, Mirkin CA (2019). "Crystal engineering with DNA". Nature Reviews Materials. 4 (3): 201–224. Bibcode:2019NatRM...4..201L. doi:10.1038/s41578-019-0087-2. S2CID   86787635.
  38. Auyeung E, Li TI, Senesi AJ, Schmucker AL, Pals BC, de la Cruz MO, et al. (January 2014). "DNA-mediated nanoparticle crystallization into Wulff polyhedra". Nature. 505 (7481): 73–77. Bibcode:2014Natur.505...73A. doi:10.1038/nature12739. PMID   24284632. S2CID   4455259.
  39. O'Brien MN, Lin HX, Girard M, Olvera de la Cruz M, Mirkin CA (November 2016). "Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds". Journal of the American Chemical Society. 138 (44): 14562–14565. doi: 10.1021/jacs.6b09704 . PMID   27792331. S2CID   11441382.
  40. Lin QY, Mason JA, Li Z, Zhou W, O'Brien MN, Brown KA, et al. (February 2018). "Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly". Science. 359 (6376): 669–672. Bibcode:2018Sci...359..669L. doi: 10.1126/science.aaq0591 . PMID   29348364. S2CID   3544406.
  41. McMillan JR, Hayes OG, Winegar PH, Mirkin CA (July 2019). "Protein Materials Engineering with DNA". Accounts of Chemical Research. 52 (7): 1939–1948. doi:10.1021/acs.accounts.9b00165. PMID   31199115. S2CID   189816251.
  42. Hayes OG, McMillan JR, Lee B, Mirkin CA (July 2018). "DNA-Encoded Protein Janus Nanoparticles". Journal of the American Chemical Society. 140 (29): 9269–9274. doi:10.1021/jacs.8b05640. OSTI   1475554. PMID   29989807. S2CID   51610571.
  43. Liu W, Tagawa M, Xin HL, Wang T, Emamy H, Li H, et al. (February 2016). "Diamond family of nanoparticle superlattices". Science. 351 (6273): 582–586. Bibcode:2016Sci...351..582L. doi:10.1126/science.aad2080. PMC   5275765 . PMID   26912698.
  44. Girard M, Wang S, Du JS, Das A, Huang Z, Dravid VP, et al. (June 2019). "Particle analogs of electrons in colloidal crystals". Science. 364 (6446): 1174–1178. Bibcode:2019Sci...364.1174G. doi:10.1126/science.aaw8237. PMC   8237478 . PMID   31221857..
  45. Auyeung E, Morris W, Mondloch JE, Hupp JT, Farha OK, Mirkin CA (February 2015). "Controlling structure and porosity in catalytic nanoparticle superlattices with DNA". Journal of the American Chemical Society. 137 (4): 1658–1662. doi:10.1021/ja512116p. PMID   25611764. S2CID   4798544.
  46. Sun L, Lin H, Kohlstedt KL, Schatz GC, Mirkin CA (July 2018). "Design principles for photonic crystals based on plasmonic nanoparticle superlattices". Proceedings of the National Academy of Sciences of the United States of America. 115 (28): 7242–7247. Bibcode:2018PNAS..115.7242S. doi: 10.1073/pnas.1800106115 . PMC   6048504 . PMID   29941604.
  47. Samanta D, Iscen A, Laramy CR, Ebrahimi SB, Bujold KE, Schatz GC, et al. (December 2019). "Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices". Journal of the American Chemical Society. 141 (51): 19973–19977. doi:10.1021/jacs.9b09900. PMC   7183202 . PMID   31840998.
  48. Zhu J, Kim Y, Lin H, Wang S, Mirkin CA (April 2018). "pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds". Journal of the American Chemical Society. 140 (15): 5061–5064. doi:10.1021/jacs.8b02793. PMID   29624374. S2CID   4936133.
  49. Mason JA, Laramy CR, Lai CT, O'Brien MN, Lin QY, Dravid VP, et al. (July 2016). "Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals". Journal of the American Chemical Society. 138 (28): 8722–8725. doi:10.1021/jacs.6b05430. OSTI   1418572. PMID   27402303. S2CID   207168694.
  50. Zhu J, Lin H, Kim Y, Yang M, Skakuj K, Du JS, et al. (February 2020). "Light-Responsive Colloidal Crystals Engineered with DNA". Advanced Materials. 32 (8): e1906600. Bibcode:2020AdM....3206600Z. doi:10.1002/adma.201906600. PMC   7061716 . PMID   31944429.
  51. Czarnek M, Bereta J (September 2017). "SmartFlares fail to reflect their target transcripts levels". Scientific Reports. 7 (1): 11682. Bibcode:2017NatSR...711682C. doi:10.1038/s41598-017-11067-6. PMC   5600982 . PMID   28916792.
  52. Nanalyze (2 February 2015). "Things Are Not Well at Nanosphere (NSPH)". Nanalyze. Retrieved 14 January 2023.
  53. Gomez A. "Nanosphere (NSPH) Stock Skyrockets on $58 Million Luminex Deal". TheStreet. Retrieved 14 January 2023.
  54. Taylor NP (14 December 2022). "AbbVie, Ipsen exit R&D deals to cap off lousy year for Exicure". Fierce Biotech. Retrieved 14 January 2023.