Spin pumping is the dynamical generation of pure spin current by the coherent precession of magnetic moments, which can efficiently inject spin from a magnetic material into an adjacent non-magnetic material. The non-magnetic material usually hosts the spin Hall effect that can convert the injected spin current into a charge voltage easy to detect. A spin pumping experiment typically requires electromagnetic irradiation to induce magnetic resonance, which converts energy and angular momenta from electromagnetic waves (usually microwaves) to magnetic dynamics and then to electrons, enabling the electronic detection of electromagnetic waves. The device operation of spin pumping can be regarded as the spintronic analog of a battery. [1]
Spin pumping involves an AC effect and a DC effect:
The spin current pumped into an adjacent layer by a precessing magnetic moment is given by [2]
where is the spin current (the vector indicates the orientation of the spin, not the direction of the current), is the spin-mixing conductance characterizing the spin transparency of the interface, is the saturation magnetization, and is the time-dependent orientation of the moment.
Optical, microwave and electrical methods are also being explored. [3] These devices could be used for low-power data transmission in spintronic devices [4] or to transmit electrical signals through insulators. [5]
Spin pumping in antiferromagnetic materials does not vanish because the antiparallel magnetic moments contribute constructively rather than destructively to spin current, which was theoretically predicted in 2014. [6] Since the frequency of antiferromagnetic resonance [7] is much higher than that of ferromagnetic resonance, spin pumping in antiferromagnets can be utilized to study electromagnetic signals in the sub-terahertz and terahertz regime, which had been demonstrated by two independent experiments in 2020. [8] [9]
Besides higher frequency, spin pumping in antiferromagnets features the chirality degree of freedom of magnetic dynamics that does not exist in ferromagnets. For example, the spin currents pumped by the left-handed and the right-handed resonance modes are opposite in direction.
Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.
Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough, electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon, and lies in the study of spintronics.
A magnon is a quasiparticle, a collective excitation of the spin structure of an electron in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of energy and lattice momentum, and are spin-1, indicating they obey boson behavior.
In the physical theory of spin glass magnetization, the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction models the coupling of nuclear magnetic moments or localized inner d- or f-shell electron spins through conduction electrons. It is named after Malvin Ruderman, Charles Kittel, Tadao Kasuya, and Kei Yosida, the physicists who first proposed and developed the model.
Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:
Exchange bias or exchange anisotropy occurs in bilayers of magnetic materials where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the soft magnetization curve of a ferromagnetic film. The exchange bias phenomenon is of tremendous utility in magnetic recording, where it is used to pin the state of the readback heads of hard disk drives at exactly their point of maximum sensitivity; hence the term "bias."
Gallium manganese arsenide, chemical formula (Ga,Mn)As is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide,, and readily compatible with existing semiconductor technologies. Differently from other dilute magnetic semiconductors, such as the majority of those based on II-VI semiconductors, it is not paramagnetic but ferromagnetic, and hence exhibits hysteretic magnetization behavior. This memory effect is of importance for the creation of persistent devices. In (Ga,Mn)As, the manganese atoms provide a magnetic moment, and each also acts as an acceptor, making it a p-type material. The presence of carriers allows the material to be used for spin-polarized currents. In contrast, many other ferromagnetic magnetic semiconductors are strongly insulating and so do not possess free carriers. (Ga,Mn)As is therefore a candidate material for spintronic devices but it is likely to remain only a testbed for basic research as its Curie temperature could only be raised up to approximately 200 K.
Magnonics is an emerging field of modern magnetism, which can be considered a sub-field of modern solid state physics. Magnonics combines the study of waves and magnetism. Its main aim is to investigate the behaviour of spin waves in nano-structure elements. In essence, spin waves are a propagating re-ordering of the magnetisation in a material and arise from the precession of magnetic moments. Magnetic moments arise from the orbital and spin moments of the electron, most often it is this spin moment that contributes to the net magnetic moment.
In condensed matter physics, an AKLT model, also known as an Affleck-Kennedy-Lieb-Tasaki model is an extension of the one-dimensional quantum Heisenberg spin model. The proposal and exact solution of this model by Ian Affleck, Elliott H. Lieb, Tom Kennedy and Hal Tasaki provided crucial insight into the physics of the spin-1 Heisenberg chain. It has also served as a useful example for such concepts as valence bond solid order, symmetry-protected topological order and matrix product state wavefunctions.
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.
Spin engineering describes the control and manipulation of quantum spin systems to develop devices and materials. This includes the use of the spin degrees of freedom as a probe for spin based phenomena. Because of the basic importance of quantum spin for physical and chemical processes, spin engineering is relevant for a wide range of scientific and technological applications. Current examples range from Bose–Einstein condensation to spin-based data storage and reading in state-of-the-art hard disk drives, as well as from powerful analytical tools like nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy to the development of magnetic molecules as qubits and magnetic nanoparticles. In addition, spin engineering exploits the functionality of spin to design materials with novel properties as well as to provide a better understanding and advanced applications of conventional material systems. Many chemical reactions are devised to create bulk materials or single molecules with well defined spin properties, such as a single-molecule magnet. The aim of this article is to provide an outline of fields of research and development where the focus is on the properties and applications of quantum spin.
In Physics, antisymmetric exchange, also known as the Dzyaloshinskii–Moriya interaction (DMI), is a contribution to the total magnetic exchange interaction between two neighboring magnetic spins, and . Quantitatively, it is a term in the Hamiltonian which can be written as
Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.
Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.
Graphene is a semimetal whose conduction and valence bands meet at the Dirac points, which are six locations in momentum space, the vertices of its hexagonal Brillouin zone, divided into two non-equivalent sets of three points. The two sets are labeled K and K′. The sets give graphene a valley degeneracy of gv = 2. By contrast, for traditional semiconductors the primary point of interest is generally Γ, where momentum is zero. Four electronic properties separate it from other condensed matter systems.
The spin Nernst effect is a phenomenon of spin current generation caused by the thermal flow of electrons or magnons in condensed matter. Under a thermal drive such as temperature gradient or chemical potential gradient, spin-up and spin-down carriers can flow perpendicularly to the thermal current and towards opposite directions without the application of a magnetic field. This effect is similar to the spin Hall effect, where a pure spin current is induced by an electrical current. The spin Nernst effect can be detected by the spatial separation of opposite spin species, typically in the form of spin polarization on the transverse boundaries of a material.
Magnetic 2D materials or magnetic van der Waals materials are two-dimensional materials that display ordered magnetic properties such as antiferromagnetism or ferromagnetism. After the discovery of graphene in 2004, the family of 2D materials has grown rapidly. There have since been reports of several related materials, all except for magnetic materials. But since 2016 there have been numerous reports of 2D magnetic materials that can be exfoliated with ease just like graphene.
Surface magnon-polaritons (SMPs) are a type of quasiparticle in condensed matter physics. They arise from the coupling of incident electromagnetic (EM) radiations to the magnetic dipole polarization in the surface layers of a solid. Magnons are analogous to other forms of polaritons, such as plasmons and phonons, but represent an oscillation of the magnetic component of the solid's EM field rather than its electric component or a mechanical oscillation in the solid's atomic structure.
Jean-Philippe Ansermet is a Swiss physicist and engineer and a professor at École Polytechnique Fédérale de Lausanne. His research focuses on the fabrication and properties of nanostructured materials as well as spintronics.
In magnetic systems, excitations can be found that are characterized by the orientation of the local magnetic moments of atomic cores. A magnetic skyrmionium is a ring-shaped topological spin texture and is closely related to the magnetic skyrmion.