Atmosphere | |
---|---|
Unit of | Pressure |
Symbol | atm |
Conversions | |
1 atm in ... | ... is equal to ... |
SI units | 101.325 kPa |
US customary units | 14.69595 psi |
other metric units | 1.013250 bar |
The standard atmosphere (symbol: atm) is a unit of pressure defined as 101325 Pa. It is sometimes used as a reference pressure or standard pressure. It is approximately equal to Earth's average atmospheric pressure at sea level. [1]
The standard atmosphere was originally defined as the pressure exerted by a 760 mm column of mercury at 0 °C (32 °F) and standard gravity (gn = 9.80665 m/s2). [2] It was used as a reference condition for physical and chemical properties, and the definition of the centigrade temperature scale set 100 °C as the boiling point of water at this pressure. In 1954, the 10th General Conference on Weights and Measures (CGPM) adopted standard atmosphere for general use and affirmed its definition of being precisely equal to 1013250 dynes per square centimetre (101325 Pa ). [3] This defined pressure in a way that is independent of the properties of any particular substance. In addition, the CGPM noted that there had been some misapprehension that the previous definition (from the 9th CGPM) "led some physicists to believe that this definition of the standard atmosphere was valid only for accurate work in thermometry." [3]
In chemistry and in various industries, the reference pressure referred to in standard temperature and pressure was commonly 1 atm (101.325 kPa) prior to 1982, but standards have since diverged; in 1982, the International Union of Pure and Applied Chemistry recommended that for the purposes of specifying the physical properties of substances, standard pressure should be precisely 100 kPa (1 bar ). [4]
Pascal | Bar | Technical atmosphere | Standard atmosphere | Torr | Pound per square inch | |
---|---|---|---|---|---|---|
(Pa) | (bar) | (at) | (atm) | (Torr) | (lbf/in2) | |
1 Pa | — | 1 Pa = 10−5 bar | 1 Pa = 1.0197×10−5 at | 1 Pa = 9.8692×10−6 atm | 1 Pa = 7.5006×10−3 Torr | 1 Pa = 0.000145037737730 lbf/in2 |
1 bar | 105 | — | = 1.0197 | = 0.98692 | = 750.06 | = 14.503773773022 |
1 at | 98066.5 | 0.980665 | — | 0.9678411053541 | 735.5592401 | 14.2233433071203 |
1 atm | ≡ 101325 | ≡ 1.01325 | 1.0332 | — | 760 | 14.6959487755142 |
1 Torr | 133.322368421 | 0.001333224 | 0.00135951 | 1/760 ≈ 0.001315789 | — | 0.019336775 |
1 lbf/in2 | 6894.757293168 | 0.068947573 | 0.070306958 | 0.068045964 | 51.714932572 | — |
A pressure of 1 atm can also be stated as:
The notation ata has been used to indicate an absolute pressure measured in either standard atmospheres (atm) [7] [ better source needed ] or technical atmospheres (at). [8]
The litre or liter is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metres (m3). A cubic decimetre occupies a volume of 10 cm × 10 cm × 10 cm and is thus equal to one-thousandth of a cubic metre.
The torr is a unit of pressure based on an absolute scale, defined as exactly 1/760 of a standard atmosphere. Thus one torr is exactly 101325/760 pascals.
In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition.
The pascal is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m2). It is also equivalent to 10 barye in the CGS system. Common multiple units of the pascal are the hectopascal, which is equal to one millibar, and the kilopascal, which is equal to one centibar.
The newton is the unit of force in the International System of Units (SI). It is defined as , the force which gives a mass of 1 kilogram an acceleration of 1 metre per second squared.
The pound of force or pound-force is a unit of force used in some systems of measurement, including English Engineering units and the foot–pound–second system.
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics,
The kilogram-force, or kilopond, is a non-standard gravitational metric unit of force. It is not accepted for use with the International System of Units (SI) and is deprecated for most uses. The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.80665 m/s2 gravitational field. That is, it is the weight of a kilogram under standard gravity. One kilogram-force is defined as 9.80665 N. Similarly, a gram-force is 9.80665 mN, and a milligram-force is 9.80665 μN.
A centimetre or millimetre of water are less commonly used measures of pressure based on the pressure head of water.
The barometric formula is a formula used to model how the pressure of the air changes with altitude.
A millimetre of mercury is a manometric unit of pressure, formerly defined as the extra pressure generated by a column of mercury one millimetre high, and currently defined as exactly 133.322387415 pascals or approximately 133.322 pascals. It is denoted mmHg or mm Hg.
A kilogram-force per square centimetre (kgf/cm2), often just kilogram per square centimetre (kg/cm2), or kilopond per square centimetre (kp/cm2) is a deprecated unit of pressure using metric units. It is not a part of the International System of Units (SI), the modern metric system. 1 kgf/cm2 equals 98.0665 kPa (kilopascals) or 0.980665 bar—2% less than a bar. It is also known as a technical atmosphere.
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.80665 m/s2. This value was established by the 3rd General Conference on Weights and Measures and used to define the standard weight of an object as the product of its mass and this nominal acceleration. The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth ; the total is about 0.5% greater at the poles than at the Equator.
The gravitational metric system is a non-standard system of units, which does not comply with the International System of Units (SI). It is built on the three base quantities length, time and force with base units metre, second and kilopond respectively. Internationally used abbreviations of the system are MKpS, MKfS or MKS . However, the abbreviation MKS is also used for the MKS system of units, which, like the SI, uses mass in kilogram as a base unit.
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .
The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and was updated in 1962, 1966, and 1976. It is largely consistent in methodology with the International Standard Atmosphere, differing mainly in the assumed temperature distribution at higher altitudes.
In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity.
Standard sea-level conditions (SSL), also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations. The term "standard sea level" is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
The pound per square inch or, more accurately, pound-force per square inch, is a unit of measurement of pressure or of stress based on avoirdupois units. It is the pressure resulting from a force with magnitude of one pound-force applied to an area of one square inch. In SI units, 1 psi is approximately 6,895 pascals.
The metresea water (msw) is a metric unit of pressure used in underwater diving. It is defined as one tenth of a bar.