Static synchronous series compensator

Last updated
Static synchronous series compensator Static synchronous series compensator.png
Static synchronous series compensator

A static synchronous series compensator (SSSC) is a type of flexible AC transmission system which consists of a solid-state voltage source inverter coupled with a transformer that is connected in series with a transmission line. This device can inject an almost sinusoidal voltage in series with the line. This injected voltage could be considered as an inductive or capacitive reactance, which is connected in series with the transmission line. [1] This feature can provide controllable voltage compensation. [2] In addition, SSSC is able to reverse the power flow by injecting a sufficiently large series reactive compensating voltage. [2]

See also

Related Research Articles

In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of RMS current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.

<span class="mw-page-title-main">Uninterruptible power supply</span> Electrical device that uses batteries to prevent any interruption of power flow

An uninterruptible power supply (UPS) or uninterruptible power source is a type of continual power system that provides automated backup electric power to a load when the input power source or mains power fails. A UPS differs from a traditional auxiliary/emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions by switching to energy stored in battery packs, supercapacitors or flywheels. The on-battery run-times of most UPSs are relatively short but sufficient to "buy time" for initiating a standby power source or properly shutting down the protected equipment. Almost all UPSs also contain integrated surge protection to shield the output appliances from voltage spikes.

<span class="mw-page-title-main">High-voltage direct current</span> Electric power transmission system

A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems.

<span class="mw-page-title-main">Power inverter</span> Device that changes direct current (DC) to alternating current (AC)

A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.

A flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the alternating current (AC) transmission of electrical energy. It is meant to enhance controllability and increase power transfer capability of the network. It is generally a power electronics-based system.

A static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. SVCs are part of the flexible AC transmission system device family, regulating voltage, power factor, harmonics and stabilizing the system. A static VAR compensator has no significant moving parts. Prior to the invention of the SVC, power factor compensation was the preserve of large rotating machines such as synchronous condensers or switched capacitor banks.

In electrical engineering, particularly power engineering, voltage regulation is a measure of change in the voltage magnitude between the sending and receiving end of a component, such as a transmission or distribution line. Voltage regulation describes the ability of a system to provide near constant voltage over a wide range of load conditions. The term may refer to a passive property that results in more or less voltage drop under various load conditions, or to the active intervention with devices for the specific purpose of adjusting voltage.

<span class="mw-page-title-main">Variable-frequency drive</span> Type of adjustable-speed drive

A variable-frequency drive, variable-speed drives, AC drives, micro drives, inverter drives, or drives) is a type of AC motor drive that controls speed and torque by varying the frequency of the input electricity. Depending on its topology, it controls the associated voltage or current variation.

<span class="mw-page-title-main">Synchronous condenser</span> Machinery used to adjust conditions on the electric power transmission grid

In electrical engineering, a synchronous condenser is a DC-excited synchronous motor, whose shaft is not connected to anything but spins freely. Its purpose is not to convert electric power to mechanical power or vice versa, but to adjust conditions on the electric power transmission grid. Its field is controlled by a voltage regulator to either generate or absorb reactive power as needed to adjust the grid's voltage, or to improve power factor. The condenser’s installation and operation are identical to large electric motors and generators.

A power conditioner is a device intended to improve the quality of the power that is delivered to electrical load equipment. The term most often refers to a device that acts in one or more ways to deliver a voltage of the proper level and characteristics to enable load equipment to function properly. In some uses, power conditioner refers to a voltage regulator with at least one other function to improve power quality

Doubly fed electric machines, also slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine.

<span class="mw-page-title-main">Static synchronous compensator</span>

A static synchronous compensator (STATCOM), originally known as a static synchronous condenser (STATCON), is a shunt-connected, reactive compensation device used on transmission networks. It uses power electronics to form a voltage-source converter that can act as either a source or sink of reactive AC power to an electricity network. It is a member of the FACTS family of devices.

<span class="mw-page-title-main">Electric power system</span> Network of electrical component deployed to generate, transmit & distribute electricity

An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.

<span class="mw-page-title-main">Excitation (magnetic)</span> Generation of a magnetic field by an electric current

In electromagnetism, excitation is the process of generating a magnetic field by means of an electric current.

<span class="mw-page-title-main">Wide area synchronous grid</span> Regional electrical grid

A wide area synchronous grid is a three-phase electric power grid that has regional scale or greater that operates at a synchronized utility frequency and is electrically tied together during normal system conditions. Also known as synchronous zones, the most powerful is the Northern Chinese State Grid with 1,700 gigawatts (GW) of generation capacity, while the widest region served is that of the IPS/UPS system serving most countries of the former Soviet Union. Synchronous grids with ample capacity facilitate electricity trading across wide areas. In the ENTSO-E in 2008, over 350,000 megawatt hours were sold per day on the European Energy Exchange (EEX).

Dynamic voltage restoration (DVR) is a method of overcoming voltage sags and swells that occur in electrical power distribution. These are a problem because spikes consume power and sags reduce efficiency of some devices. DVR saves energy through voltage injections that can affect the phase and wave-shape of the power being supplied.

A solid-state AC-to-AC converter converts an AC waveform to another AC waveform, where the output voltage and frequency can be set arbitrarily.

<span class="mw-page-title-main">Unified power flow controller</span> Electrical device for reactive power compensation on high-voltage electricity transmission networks

A unified power flow controller (UPFC) is an electrical device for providing fast-acting reactive power compensation on high-voltage electricity transmission networks. It uses a pair of three-phase controllable bridges to produce current that is injected into a transmission line using a series transformer. The controller can control active and reactive power flows in a transmission line.

A thyristor-switched capacitor (TSC) is a type of equipment used for compensating reactive power in electrical power systems. It consists of a power capacitor connected in series with a bidirectional thyristor valve and, usually, a current limiting reactor (inductor). The thyristor switched capacitor is an important component of a Static VAR Compensator (SVC), where it is often used in conjunction with a thyristor controlled reactor (TCR). Static VAR compensators are a member of the Flexible AC transmission system (FACTS) family.

Voltage control and reactive power management are two facets of an ancillary service that enables reliability of the transmission networks and facilitates the electricity market on these networks. Both aspects of this activity are intertwined, so within this article the term voltage control will be primarily used to designate this essentially single activity, as suggested by Kirby & Hirst (1997). Voltage control does not include reactive power injections within one AC cycle; these are a part of a separate ancillary service, so-called system stability service. The transmission of reactive power is limited by its nature, so the voltage control is provided through pieces of equipment distributed throughout the power grid, unlike the frequency control that is based on maintaining the overall active power balance in the system.

References

  1. "SSSC-static synchronous series compensator: theory, modeling, and application" (PDF). IEEE Journals & Magazine. Retrieved 2017-12-15.
  2. 1 2 "Static Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines" (PDF). IEEE Journals & Magazine. 2017-11-07. Retrieved 2017-12-15.