Statistical energy analysis

Last updated

Statistical energy analysis (SEA) is a method for predicting the transmission of sound and vibration through complex structural acoustic systems. The method is particularly well suited for quick system level response predictions at the early design stage of a product, and for predicting responses at higher frequencies. In SEA a system is represented in terms of a number of coupled subsystems and a set of linear equations are derived that describe the input, storage, transmission and dissipation of energy within each subsystem. The parameters in the SEA equations are typically obtained by making certain statistical assumptions about the local dynamic properties of each subsystem (similar to assumptions made in room acoustics and statistical mechanics). These assumptions significantly simplify the analysis and make it possible to analyze the response of systems that are often too complex to analyze using other methods (such as finite element and boundary element methods).

Contents

History

The initial derivation of SEA arose from independent calculations made in 1959 by Richard Lyon [1] and Preston Smith [2] as part of work concerned with the development of methods for analyzing the response of large complex aerospace structures subjected to spatially distributed random loading. Lyon's calculation showed that under certain conditions, the flow of energy between two coupled oscillators is proportional to the difference in the oscillator energies (suggesting a thermal analogy exists in structural-acoustic systems). Smith's calculation showed that a structural mode and a diffuse reverberant sound field attain a state of 'equipartition of energy' as the damping of the mode is reduced (suggesting a state of thermal equilibrium can exist in structural-acoustic systems). The extension of the two oscillator results to more general systems is often referred to as the modal approach to SEA. [3] [4] While the modal approach provides physical insights into the mechanisms that govern energy flow it involves assumptions that have been the subject of considerable debate over many decades. [5] The theory that combines deterministic finite element methods (FEM) and SEA was developed by Phil Shorter and Robin Langley and is called hybrid FEM/SEA theory. [6] [7] In recent years, alternative derivations of the SEA equations based on wave approaches have become available. Such derivations form the theoretical foundation behind a number of modern commercial SEA codes and provide a general framework for calculating the parameters in an SEA model. A number of methods also exist for post-processing FE models to obtain estimates of SEA parameters. Lyon mentioned the use of such methods in his initial SEA text book in 1975 but a number of alternative derivations have been presented over the years [8] [9] [10] [11]

Method

To solve a noise and vibration problem with SEA, the system is partitioned into a number of components (such as plates, shells, beams and acoustic cavities) that are coupled together at various junctions. Each component can support a number of different propagating wavetypes (for example, the bending, longitudinal and shear wavefields in a thin isotropic plate). From an SEA point of view, the reverberant field of each wavefield represents an orthogonal store of energy and so is represented as a separate energy degree of freedom in the SEA equations.

The energy storage capacity of each reverberant field is described by a parameter termed the 'modal density', which depends on the average speed with which waves propagate energy through the subsystem (the average group velocity), and the overall dimension of the subsystem.

The transmission of energy between different wavefields at a given type of junction is described by parameters termed 'coupling loss factors'. Each coupling loss factor describes the input power to the direct field of a given receiving subsystem per unit energy in the reverberant field of a particular source subsystem.

The coupling loss factors are typically calculated by considering the way in which waves are scattered at different types of junctions (for example, point, line and area junctions). Strictly, SEA predicts the average response of a population or ensemble of systems and so the coupling loss factors and modal densities represent ensemble average quantities.

To simplify the calculation of the coupling loss factors it is often assumed that there is significant scattering within each subsystem (when viewed across an ensemble) so that direct field transmission between multiple connections to the same subsystem is negligible and reverberant transmission dominates. In practical terms, this means that SEA is often best suited for problems in which each subsystem is large compared with a wavelength (or from a modal point of view, each subsystem contains several modes in a given frequency band of interest).

The SEA equations contain a relatively small number of degrees of freedom and so can be easily inverted to find the reverberant energy in each subsystem due to a given set of external input powers. The (ensemble average) sound pressure levels and vibration velocities within each subsystem can then be obtained by superimposing the direct and reverberant fields within each subsystem.

Applications

Over the past half century, SEA has found applications in virtually every industry for which noise and vibration are of concern. Typical applications include:

Additional examples can be found in the proceedings of conferences such as INTERNOISE, NOISECON, EURONOISE, ICSV, NOVEM, SAE N&V.

Software implementations

Several commercial solutions for Statistical Energy Analysis are available:

Free solutions:

Other implementations:

Related Research Articles

<span class="mw-page-title-main">Acoustics</span> Branch of physics involving mechanical waves

Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon.

<span class="mw-page-title-main">Soundproofing</span> Methods to reduce sound pressure

Soundproofing is any means of impeding sound propagation. There are several basic ways to reduce sound: increasing the distance between source and receiver, decoupling, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles for absorption, or using active antinoise sound generators.

<span class="mw-page-title-main">Normal mode</span> Pattern of oscillating motion in a system

A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.

<span class="mw-page-title-main">Resonator</span> Device or system that exhibits resonance

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical. Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.

Rotordynamics is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage. At its most basic level, rotor dynamics is concerned with one or more mechanical structures (rotors) supported by bearings and influenced by internal phenomena that rotate around a single axis. The supporting structure is called a stator. As the speed of rotation increases the amplitude of vibration often passes through a maximum that is called a critical speed. This amplitude is commonly excited by imbalance of the rotating structure; everyday examples include engine balance and tire balance. If the amplitude of vibration at these critical speeds is excessive, then catastrophic failure occurs. In addition to this, turbomachinery often develop instabilities which are related to the internal makeup of turbomachinery, and which must be corrected. This is the chief concern of engineers who design large rotors.

The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration. It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable. The types of equations which arise from modal analysis are those seen in eigensystems. The physical interpretation of the eigenvalues and eigenvectors which come from solving the system are that they represent the frequencies and corresponding mode shapes. Sometimes, the only desired modes are the lowest frequencies because they can be the most prominent modes at which the object will vibrate, dominating all the higher frequency modes.

Noise, vibration, and harshness (NVH), also known as noise and vibration (N&V), is the study and modification of the noise and vibration characteristics of vehicles, particularly cars and trucks. While noise and vibration can be readily measured, harshness is a subjective quality, and is measured either via jury evaluations, or with analytical tools that can provide results reflecting human subjective impressions. The latter tools belong to the field psychoacoustics.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

In geophysics, geology, civil engineering, and related disciplines, seismic noise is a generic name for a relatively persistent vibration of the ground, due to a multitude of causes, that is often a non-interpretable or unwanted component of signals recorded by seismometers.

Structural acoustics is the study of the mechanical waves in structures and how they interact with and radiate into adjacent media. The field of structural acoustics is often referred to as vibroacoustics in Europe and Asia. People that work in the field of structural acoustics are known as structural acousticians. The field of structural acoustics can be closely related to a number of other fields of acoustics including noise, transduction, underwater acoustics, and physical acoustics.

<span class="mw-page-title-main">Direct-field acoustic testing</span> Testing method

Direct-field acoustic testing, or DFAT, is a technique used for acoustic testing of aerospace structures by subjecting them to sound waves created by an array of acoustic drivers. The method uses electro-dynamic acoustic speakers, arranged around the test article to provide a uniform, well-controlled, direct sound field at the surface of the unit under test. The system employs high capability acoustic drivers, powerful audio amplifiers, a narrow-band multiple-input-multiple-output (MIMO) controller and precision laboratory microphones to produce an acoustic environment that can simulate a helicopter, aircraft, jet engine or launch vehicle sound pressure field. A high level system is capable of overall sound pressure levels in the 125–147 dB for more than one minute over a frequency range from 25 Hz to 10 kHz.

Unified framework is a general formulation which yields nth - order expressions giving mode shapes and natural frequencies for damaged elastic structures such as rods, beams, plates, and shells. The formulation is applicable to structures with any shape of damage or those having more than one area of damage. The formulation uses the geometric definition of the discontinuity at the damage location and perturbation to modes and natural frequencies of the undamaged structure to determine the mode shapes and natural frequencies of the damaged structure. The geometric discontinuity at the damage location manifests itself in terms of discontinuities in the cross-sectional properties, such as the depth of the structure, the cross-sectional area or the area moment of inertia. The change in cross-sectional properties in turn affects the stiffness and mass distribution. Considering the geometric discontinuity along with the perturbation of modes and natural frequencies, the initial homogeneous differential equation with nonconstant coefficients is changed to a series of non-homogeneous differential equations with constant coefficients. Solutions of this series of differential equations is obtained in this framework.

ACTRAN is a finite element-based computer aided engineering software modeling the acoustic behavior of mechanical systems and parts. Actran is being developed by Free Field Technologies, a Belgian software company founded in 1998 by Jean-Pierre Coyette and Jean-Louis Migeot. Free Field Technologies is a wholly owned subsidiary of the MSC Software Corporation since 2011. Free Field Technologies and MSC Software are part of Hexagon AB since 2017.

Diffuse field acoustic testing is the testing of the mechanical resistance of a spacecraft to the acoustic pressures during launch.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

Dynamical energy analysis (DEA) is a method for numerically modelling structure borne sound and vibration in complex structures. It is applicable in the mid-to-high frequency range and is in this regime computational more efficient than traditional deterministic approaches (such as finite element and boundary element methods). In comparison to conventional statistical approaches such as statistical energy analysis (SEA), DEA provides more structural details and is less problematic with respect to subsystem division. The DEA method predicts the flow of vibrational wave energy across complex structures in terms of (linear) transport equations. These equations are then discretized and solved on meshes.

Electromagnetically induced acoustic noise (and vibration), electromagnetically excited acoustic noise, or more commonly known as coil whine, is audible sound directly produced by materials vibrating under the excitation of electromagnetic forces. Some examples of this noise include the mains hum, hum of transformers, the whine of some rotating electric machines, or the buzz of fluorescent lamps. The hissing of high voltage transmission lines is due to corona discharge, not magnetism.

Solid bodies in contact that undergo shear relative motion (friction) radiate energy. Part of this energy is radiated directly into the surrounding fluid media, and another part radiates throughout the solid bides and the connecting boundary conditions. The coupling of structural vibration and acoustic radiation takes is rooted in the mechanism of atomic oscillations, by which kinetic energy is translated to thermal energy.

References

  1. LYON, R.H.; MAIDANIK, G.: Power Flow Between Linearly Coupled Oscillators, Journal of the Acoustical Society of America; 34, pp.623639, 1962
  2. Smith, P. W. "Response and radiation of structural modes excited by sound." The Journal of the Acoustical Society of America 34.5 (1962): 640-647.
  3. Lyon, Richard H. Statistical energy analysis of dynamical systems: theory and applications. 1975.
  4. Le Bot, A., "Foundation of statistical energy analysis in vibroacoustics. Oxford University Press, 2015.
  5. Fahy, F J., "Statistical energy analysis: a critical overview." Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 346.1681 (1994): 431-447".
  6. Shorter, P. J., and Langley R. S., "Vibro-acoustic analysis of complex systems." Journal of Sound and Vibration 288.3 (2005): 669-699.
  7. Peiffer, A., "Vibroacoustic Simulation: An Introduction to Statistical Energy Analysis and Hybrid Methods, John Wiley, 2022.
  8. Lalor, N. "The measurement of SEA loss factor on a fully assembled structure", ISVR Technical Report 150, 1987
  9. Simmons, C. "Structure-borne sound transmission through plate junctions and estimates of sea coupling loss factors using the finite element method", Journal of Sound and Vibration, 144(2) 215-227, 1991
  10. MACE, B. et al "ENERGY FLOW MODELS FROM FINITE ELEMENT ANALYSIS", Journal of Sound and Vibration, (233) 3, 2000, 369-389
  11. Borello G. et al "Virtual SEA: mid-frequency structure-borne noise modeling based on Finite Element Analysis", SAE Noise and Vibration Conference – May 6–8, 2003 – Traverse City, Michigan, USA
  12. "Actran Product". Free Field Technologies, MSC Software. Retrieved 2019-02-22.
  13. "Software Solutions". ESI Group. Retrieved 2017-03-10.
  14. "SEAM acoustic and vibration prediction software". Seam.com. Retrieved 2017-03-10.
  15. vehicledynamicsinternational.com April 2019, Altair expands solver portfolio with SEAM acquisition, retrieved at 29 January 2021.
  16. "wave6". Dassault Systèmes SIMULIA. Retrieved 2018-07-20.
  17. "Statistical Energy Analysis SEA Software - GSSEA-Light - Gothenburg Sound AB". Gothenburgsound.se. Retrieved 2017-03-10.
  18. "InterAC". Interac.fr. Retrieved 2017-03-10.
  19. "Home". Free-sea.de. Retrieved 2017-03-10.
  20. "Applied Acoustics - SEAlab". Ta.chalmers.se. Archived from the original on 2011-10-07. Retrieved 2017-03-10.
  21. "pyva". pyva.eu. Retrieved 2022-11-15.
  22. "NOVASEA, Farouk Bellahirech" (PDF).