Statistical interference

Last updated

When two probability distributions overlap, statistical interference exists. Knowledge of the distributions can be used to determine the likelihood that one parameter exceeds another, and by how much.

Contents

This technique can be used for geometric dimensioning of mechanical parts, determining when an applied load exceeds the strength of a structure, and in many other situations. This type of analysis can also be used to estimate the probability of failure or the failure rate .

Dimensional interference

Interference of measurement distributions to determine fit of parts Interference.jpg
Interference of measurement distributions to determine fit of parts

Mechanical parts are usually designed to fit precisely together. For example, if a shaft is designed to have a "sliding fit" in a hole, the shaft must be a little smaller than the hole. (Traditional tolerances may suggest that all dimensions fall within those intended tolerances. A process capability study of actual production, however, may reveal normal distributions with long tails.) Both the shaft and hole sizes will usually form normal distributions with some average (arithmetic mean) and standard deviation.

With two such normal distributions, a distribution of interference can be calculated. The derived distribution will also be normal, and its average will be equal to the difference between the means of the two base distributions. The variance of the derived distribution will be the sum of the variances of the two base distributions.

This derived distribution can be used to determine how often the difference in dimensions will be less than zero (i.e., the shaft cannot fit in the hole), how often the difference will be less than the required sliding gap (the shaft fits, but too tightly), and how often the difference will be greater than the maximum acceptable gap (the shaft fits, but not tightly enough).

Physical property interference

Interference of distributions of applied load and strength Interference Forces.jpg
Interference of distributions of applied load and strength

Physical properties and the conditions of use are also inherently variable. For example, the applied load (stress) on a mechanical part may vary. The measured strength of that part (tensile strength, etc.) may also be variable. The part will break when the stress exceeds the strength. [1] [2]

With two normal distributions, the statistical interference may be calculated as above. (This problem is also workable for transformed units such as the log-normal distribution). With other distributions, or combinations of different distributions, a Monte Carlo method or simulation is often the most practical way to quantify the effects of statistical interference.

See also

Related Research Articles

Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher. ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means. In other words, the ANOVA is used to test the difference between two or more means.

Engineering statistics combines engineering and statistics using scientific methods for analyzing data. Engineering statistics involves data concerning manufacturing processes such as: component dimensions, tolerances, type of material, and fabrication process control. There are many methods used in engineering analysis and they are often displayed as histograms to give a visual of the data as opposed to being just numerical. Examples of methods are:

  1. Design of Experiments (DOE) is a methodology for formulating scientific and engineering problems using statistical models. The protocol specifies a randomization procedure for the experiment and specifies the primary data-analysis, particularly in hypothesis testing. In a secondary analysis, the statistical analyst further examines the data to suggest other questions and to help plan future experiments. In engineering applications, the goal is often to optimize a process or product, rather than to subject a scientific hypothesis to test of its predictive adequacy. The use of optimal designs reduces the cost of experimentation.
  2. Quality control and process control use statistics as a tool to manage conformance to specifications of manufacturing processes and their products.
  3. Time and methods engineering use statistics to study repetitive operations in manufacturing in order to set standards and find optimum manufacturing procedures.
  4. Reliability engineering which measures the ability of a system to perform for its intended function and has tools for improving performance.
  5. Probabilistic design involving the use of probability in product and system design
  6. System identification uses statistical methods to build mathematical models of dynamical systems from measured data. System identification also includes the optimal design of experiments for efficiently generating informative data for fitting such models.

In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value.

In engineering, a factor of safety (FoS) or safety factor (SF) expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy. Many systems are intentionally built much stronger than needed for normal usage to allow for emergency situations, unexpected loads, misuse, or degradation (reliability). Margin of safety is a related measure, expressed as a relative change.

Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. A structure designed by LSD is proportioned to sustain all actions likely to occur during its design life, and to remain fit for use, with an appropriate level of reliability for each limit state. Building codes based on LSD implicitly define the appropriate levels of reliability by their prescriptions.

<span class="mw-page-title-main">Engineering tolerance</span> Permissible limit or limits of variation in engineering

Engineering tolerance is the permissible limit or limits of variation in:

  1. a physical dimension;
  2. a measured value or physical property of a material, manufactured object, system, or service;
  3. other measured values ;
  4. in engineering and safety, a physical distance or space (tolerance), as in a truck (lorry), train or boat under a bridge as well as a train in a tunnel ;
  5. in mechanical engineering, the space between a bolt and a nut or a hole, etc.

Failure rate is the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.

<span class="mw-page-title-main">Test statistic</span> Statistic used in statistical hypothesis testing

Test statistic is a quantity derived from the sample for statistical hypothesis testing. A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test. In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behaviours that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.

An interference fit, also known as a pressed fit or friction fit, is a form of fastening between two tightfitting mating parts that produces a joint which is held together by friction after the parts are pushed together.

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability is defined as the probability that a product, system, or service will perform its intended function adequately for a specified period of time, OR will operate in a defined environment without failure. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

A structural load or structural action is a mechanical load applied to structural elements. A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements. Excess load may cause structural failure, so this should be considered and controlled during the design of a structure. Particular mechanical structures—such as aircraft, satellites, rockets, space stations, ships, and submarines—are subject to their own particular structural loads and actions. Engineers often evaluate structural loads based upon published regulations, contracts, or specifications. Accepted technical standards are used for acceptance testing and inspection.

<span class="mw-page-title-main">Probabilistic design</span> Discipline within engineering design

Probabilistic design is a discipline within engineering design. It deals primarily with the consideration and minimization of the effects of random variability upon the performance of an engineering system during the design phase. Typically, these effects studied and optimized are related to quality and reliability. It differs from the classical approach to design by assuming a small probability of failure instead of using the safety factor. Probabilistic design is used in a variety of different applications to assess the likelihood of failure. Disciplines which extensively use probabilistic design principles include product design, quality control, systems engineering, machine design, civil engineering and manufacturing.

Engineering fits are generally used as part of geometric dimensioning and tolerancing when a part or assembly is designed. In engineering terms, the "fit" is the clearance between two mating parts, and the size of this clearance determines whether the parts can, at one end of the spectrum, move or rotate independently from each other or, at the other end, are temporarily or permanently joined. Engineering fits are generally described as a "shaft and hole" pairing, but are not necessarily limited to just round components. ISO is the internationally accepted standard for defining engineering fits, but ANSI is often still used in North America.

<span class="mw-page-title-main">Plot (graphics)</span> Graphical technique for data sets

A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer. In the past, sometimes mechanical or electronic plotters were used. Graphs are a visual representation of the relationship between variables, which are very useful for humans who can then quickly derive an understanding which may not have come from lists of values. Given a scale or ruler, graphs can also be used to read off the value of an unknown variable plotted as a function of a known one, but this can also be done with data presented in tabular form. Graphs of functions are used in mathematics, sciences, engineering, technology, finance, and other areas.

Tolerance analysis is the general term for activities related to the study of accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems. Engineers analyze tolerances for the purpose of evaluating geometric dimensioning and tolerancing (GD&T). Methods include 2D tolerance stacks, 3D Monte Carlo simulations, and datum conversions.

OptiY is a design environment software that provides modern optimization strategies and state of the art probabilistic algorithms for uncertainty, reliability, robustness, sensitivity analysis, data-mining and meta-modeling.

<span class="mw-page-title-main">Probability box</span> Characterization of uncertain numbers consisting of both aleatoric and epistemic uncertainties

A probability box is a characterization of uncertain numbers consisting of both aleatoric and epistemic uncertainties that is often used in risk analysis or quantitative uncertainty modeling where numerical calculations must be performed. Probability bounds analysis is used to make arithmetic and logical calculations with p-boxes.

In statistics, a c+-probability is the probability that a contrast variable obtains a positive value. Using a replication probability, the c+-probability is defined as follows: if we get a random draw from each group and calculate the sampled value of the contrast variable based on the random draws, then the c+-probability is the chance that the sampled values of the contrast variable are greater than 0 when the random drawing process is repeated infinite times. The c+-probability is a probabilistic index accounting for distributions of compared groups.

<span class="mw-page-title-main">OptiSLang</span>

optiSLang is a software platform for CAE-based sensitivity analysis, multi-disciplinary optimization (MDO) and robustness evaluation. It was originally developed by Dynardo GmbH and provides a framework for numerical Robust Design Optimization (RDO) and stochastic analysis by identifying variables which contribute most to a predefined optimization goal. This includes also the evaluation of robustness, i.e. the sensitivity towards scatter of design variables or random fluctuations of parameters. In 2019, Dynardo GmbH was acquired by Ansys.

References

  1. Sundarth, S; Woeste, Frank E.; Galligan, William (1978), Differential reliability : probabilistic engineering applied to wood members in bending-tension (PDF), vol. Res. Pap. FPL-RP-302., US Forest Products Laboratory, retrieved 21 January 2015{{citation}}: CS1 maint: multiple names: authors list (link)
  2. Long, M W; Narcico, J D (June 1999), Probabilistic Design Methodology for Composite Aircraft Structures, DOT/FAA/AR-99/2, FAA, archived from the original on March 3, 2016, retrieved 24 January 2015