Stefan Raunser | |
---|---|
Born | 1976 |
Nationality | German |
Alma mater | Max Planck Institute of Biophysics, Goethe University Frankfurt |
Known for | CryoEM, CryoET, Membrane protein, Toxin, Cytoskeleton, Sarcomere |
Awards | German Academy of Sciences Leopoldina EMBO Member Einstein Foundation Berlin Professorship Jugend forscht |
Scientific career | |
Fields | Biochemistry |
Institutions | Max Planck Institute of Molecular Physiology, Harvard Medical School, Freie Universität Berlin, TU Dortmund University, University of Duisburg-Essen |
Doctoral advisor | Prof. Dr. Werner Kühlbrandt [1] |
Other academic advisors | Prof. Dr. Roger S. Goody, Prof. Dr. Thomas Walz [2] |
Website | https://www.mpi-dortmund.mpg.de/research/departments/structural-biochemistry |
Stefan Raunser [3] (born 1976 [4] in Landau in der Pfalz, Germany) is a German scientist and structural biologist specializing in membrane proteins, the cytoskeleton, toxins, and sarcomere structural biochemistry. Since 2014, he has been a director at the Max Planck Institute of Molecular Physiology [5] in Dortmund, Germany.
Raunser studied biology and chemistry at the Johannes Gutenberg-Universität Mainz and completed his Ph.D. in biochemistry at the Goethe University Frankfurt in 2004, under the supervision of Prof. Werner Kühlbrandt at the Max Planck Institute of Biophysics in Frankfurt/Main. [6]
He continued his research as a postdoctoral researcher at Harvard Medical School in Boston, USA, working with Thomas Walz [7] from 2005 to 2008. He then became an "Emmy Noether group leader" [8] at the Max Planck Institute of Molecular Physiology in Dortmund, serving in that position from 2008 to 2013. [9] In 2014, Raunser held the Einstein Professorship [10] for Membrane Biochemistry at Free University of Berlin from January to June before assuming his current role as a director at the Max Planck Institute of Molecular Physiology. [11] In 2015, he became an honorary professor at the University of Duisburg-Essen, [12] and later that same year, he became an adjunct professor at Technical University of Dortmund. [13]
The Raunser lab specializes in structural biochemistry, they employ and develop methods in CryoEM and CryoET to conduct research and uncover the molecular mechanisms in different aspects of cell biology.
In the field of Tc toxins, tripartite ABC-type toxins from Photorhabdus luminescens and other bacteria that are used by the bacteria as virulence factors, [14] his research has focused on molecular mechanisms involved in toxin activation, [15] toxin release, [16] receptor binding, [17] [18] membrane permeation, [19] protein translocation, [20] [21] and intoxication. [22] His group published a movie of the intoxication process. [23] His work on Tc toxins has revealed their potential as customisable molecular syringes for delivering proteins across membranes, opening up possibilities for biotechnological and biomedical applications. [24] [25]
The Raunser lab has contributed to developments in cryoEM image processing and cryoET hardware development. [26] They developed SPHIRE [27] (together with Pawel Penczek), which evolved later into TranSPHIRE. [28] The program offers an easy-to-use and versatile image processing suite for the single particle analysis of protein complexes in CryoEM. The group has also developed other software tools, such as SPHIRE-crYOLO [29] and TomoTwin, [30] [31] for automatic particle picking in cryoEM and cryoET. On the CryoET front, the group has developed a streamlined workflow for automated cryo-focused ion beam milling for the analysis of vitrified samples by electron cryo tomography. [32]
Raunser's group has increased the resolution limits of single particle cryoEM reconstructions of muscle and cytoskeletal proteins, including actin filaments (F-actin), [33] [34] actin filaments in complex with actin-binding proteins, [35] toxins [36] [37] and ligands, [38] [39] the actin-tropomyosin complex, [40] and the actomyosin complex. [41] [42] [43] The lab has determined the cryoEM structures of F-actin at ~2.2 Å resolution, allowing for the first time the direct visualisation of water molecules in the structure and giving atomic insight into ATP hydrolysis in F-actin [44] [45] [46] [47] and phosphate release from the filament after hydrolysis. [48]
Raunser's group has revealed the three-dimensional organization of the sarcomere in situ, [49] [50] resolving the molecular organization of myosin, alpha-actinin-1, and additional sarcomeric components. The group also determined the first structure of native nebulin bound to actin thin filaments within intact sarcomeres at 4.5 Å resolution, [51] and has successfully obtained the world's first high-resolution 3D image of the myosin thick filament in its natural cellular environment. [52] [53]
Raunser's group has made significant contributions to understanding the structures of key proteins involved in cell signaling, such as the rabbit ryanodine receptor 1 [54] and the TRPC4 channel, [55] as well as the Drosophila's Slowpoke (Slo) potassium channel. [56] This research has provided insights into the regulatory mechanisms and revealed potential target sites for drug development.
Structural biology, as defined by the Journal of Structural Biology, deals with structural analysis of living material at every level of organization.
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components: microfilaments, intermediate filaments, and microtubules, and these are all capable of rapid growth or disassembly depending on the cell's requirements.
Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other proteins in the cell. Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. In inducing cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors. Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and pseudopod advancement. Microfilaments have a tough, flexible framework which helps the cell in movement.
Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.
Myosins are a family of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility.
Transmission electron cryomicroscopy (CryoTEM), commonly known as cryo-EM, is a form of cryogenic electron microscopy, more specifically a type of transmission electron microscopy (TEM) where the sample is studied at cryogenic temperatures. Cryo-EM, specifically 3-dimensional electron microscopy (3DEM), is gaining popularity in structural biology.
MYH7 is a gene encoding a myosin heavy chain beta (MHC-β) isoform expressed primarily in the heart, but also in skeletal muscles. This isoform is distinct from the fast isoform of cardiac myosin heavy chain, MYH6, referred to as MHC-α. MHC-β is the major protein comprising the thick filament that forms the sarcomeres in cardiac muscle and plays a major role in cardiac muscle contraction.
Cryogenic electron tomography (cryoET) is an imaging technique used to reconstruct high-resolution (~1–4 nm) three-dimensional volumes of samples, often biological macromolecules and cells. cryoET is a specialized application of transmission electron cryomicroscopy (CryoTEM) in which samples are imaged as they are tilted, resulting in a series of 2D images that can be combined to produce a 3D reconstruction, similar to a CT scan of the human body. In contrast to other electron tomography techniques, samples are imaged under cryogenic conditions. For cellular material, the structure is immobilized in non-crystalline, vitreous ice, allowing them to be imaged without dehydration or chemical fixation, which would otherwise disrupt or distort biological structures.
Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the contractile proteins and titin is an elastic protein. The myofilaments act together in muscle contraction, and in order of size are a thick one of mostly myosin, a thin one of mostly actin, and a very thin one of mostly titin.
Nebulin is an actin-binding protein which is localized to the thin filament of the sarcomeres in skeletal muscle. Nebulin in humans is coded for by the gene NEB. It is a very large protein and binds as many as 200 actin monomers. Because its length is proportional to thin filament length, it is believed that nebulin acts as a thin filament "ruler" and regulates thin filament length during sarcomere assembly. Other functions of nebulin, such as a role in cell signaling, remain uncertain.
CapZ, also known as CAPZ, CAZ1 and CAPPA1, is a capping protein that caps the barbed end of actin filaments in muscle cells.
The prokaryotic cytoskeleton is the collective name for all structural filaments in prokaryotes. It was once thought that prokaryotic cells did not possess cytoskeletons, but advances in visualization technology and structure determination led to the discovery of filaments in these cells in the early 1990s. Not only have analogues for all major cytoskeletal proteins in eukaryotes been found in prokaryotes, cytoskeletal proteins with no known eukaryotic homologues have also been discovered. Cytoskeletal elements play essential roles in cell division, protection, shape determination, and polarity determination in various prokaryotes.
Dynactin is a 23 subunit protein complex that acts as a co-factor for the microtubule motor cytoplasmic dynein-1. It is built around a short filament of actin related protein-1 (Arp1).
Stress fibers are contractile actin bundles found in non-muscle cells. They are composed of actin (microfilaments) and non-muscle myosin I (NMMII), and also contain various crosslinking proteins, such as α-actinin, to form a highly regulated actomyosin structure within non-muscle cells. Stress fibers have been shown to play an important role in cellular contractility, providing force for a number of functions such as cell adhesion, migration and morphogenesis.
Arp2/3 complex is a seven-subunit protein complex that plays a major role in the regulation of the actin cytoskeleton. It is a major component of the actin cytoskeleton and is found in most actin cytoskeleton-containing eukaryotic cells. Two of its subunits, the Actin-Related Proteins ARP2 and ARP3, closely resemble the structure of monomeric actin and serve as nucleation sites for new actin filaments. The complex binds to the sides of existing ("mother") filaments and initiates growth of a new ("daughter") filament at a distinctive 70-degree angle from the mother. Branched actin networks are created as a result of this nucleation of new filaments. The regulation of rearrangements of the actin cytoskeleton is important for processes like cell locomotion, phagocytosis, and intracellular motility of lipid vesicles.
Klaus Weber was a German scientist who made many fundamentally important contributions to biochemistry, cell biology, and molecular biology, and was for many years the director of the Laboratory of Biochemistry and Cell Biology at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany. This institute has been renamed the Max Planck Institute for Multidisciplinary Sciences.
The sliding filament theory explains the mechanism of muscle contraction based on muscle proteins that slide past each other to generate movement. According to the sliding filament theory, the myosin of muscle fibers slide past the actin during muscle contraction, while the two groups of filaments remain at relatively constant length.
Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane. While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy for macromolecular structure determination without the need for crystallization.
Sjors Hendrik Willem ScheresFRS is a Dutch scientist at the MRC Laboratory of Molecular Biology Cambridge, UK.
Tanmay A. M. Bharat is a programme leader in the Structural Studies Division of the MRC Laboratory of Molecular Biology. He and his group use electron tomography, together with several structural and cell biology methods to study the cell surfaces of bacteria and archaea. His work has increased the understanding of how surface molecules help in the formation of multicellular communities of prokaryotes, examples of which include biofilms and microbiomes. He has been awarded several prizes and fellowships for his work.
{{cite journal}}
: Cite journal requires |journal=
(help)